The Computational Neurobiology of Reaching and Pointing


Book Description

An introduction to the computational biology of reaching and pointing, with an emphasis on motor learning. Neuroscience involves the study of the nervous system, and its topics range from genetics to inferential reasoning. At its heart, however, lies a search for understanding how the environment affects the nervous system and how the nervous system, in turn, empowers us to interact with and alter our environment. This empowerment requires motor learning. The Computational Neurobiology of Reaching and Pointing addresses the neural mechanisms of one important form of motor learning. The authors integrate material from the computational, behavioral, and neural sciences of motor control that is not available in any other single source. The result is a unified, comprehensive model of reaching and pointing. The book is intended to be used as a text by graduate students in both neuroscience and bioengineering and as a reference source by experts in neuroscience, robotics, and other disciplines. The book begins with an overview of the evolution, anatomy, and physiology of the motor system, including the mechanisms for generating force and maintaining limb stability. The sections that follow, "Computing Locations and Displacements", "Skills, Adaptations, and Trajectories", and "Predictions, Decisions, and Flexibility", present a theory of sensorially guided reaching and pointing that evolves organically based on computational principles rather than a traditional structure-by-structure approach. The book also includes five appendixes that provide brief refreshers on fundamentals of biology, mathematics, physics, and neurophysiology, as well as a glossary of relevant terms. The authors have also made supplemental materials available on the Internet. These web documents provide source code for simulations, step-by-step derivations of certain mathematical formulations, and expanded explanations of some concepts.




Vigor


Book Description

An examination of the link between the vigor with which we move and the value that the brain assigns to the goal of the movement. Why do we reflexively run toward people we love, but only walk toward others? In Vigor, Reza Shadmehr and Alaa Ahmed examine the link between how the brain assigns value to things and how it controls our movements. They find that brain regions thought to be principally involved in decision making also affect movement vigor--and that brain regions thought to be principally responsible for movement also bias patterns of decision making.




The Neurobiology of the Prefrontal Cortex


Book Description

The prefrontal cortex makes up almost a quarter of the human brain, and it expanded dramatically during primate evolution. The Neurobiology of the Prefrontal Cortex presents a new theory about its fundamental function. In this important new book, the authors argue that primate-specific parts of the prefrontal cortex evolved to reduce errors in foraging choices, so that particular ancestors of modern humans could overcome periodic food shortages. These developments laid the foundation for working out problems in our imagination, which resulted in the insights that allow humans to avoid errors entirely, at least at times. In the book, the authors detail which parts of the prefrontal cortex evolved exclusively in primates, how its connections explain why the prefrontal cortex alone can perform its function, and why other parts of the brain cannot do what the prefrontal cortex does. Based on an analysis of its evolutionary history, the book uses evidence from lesion, imaging, and cell-recording experiments to argue that the primate prefrontal cortex generates goals from a current behavioural context and that it can do so on the basis of single events. As a result, the prefrontal cortex uses the attentive control of behaviour to augment an older general-purpose learning system, one that evolved very early in the history of animals. This older system learns slowly and cumulatively over many experiences based on reinforcement. The authors argue that a new learning system evolved in primates at a particular time and place in their history, that it did so to decrease the errors inherent in the older learning system, and that severe volatility of food resources provided the driving force for these developments. Written by two leading brain scientists, The Neurobiology of the Prefrontal Cortex is an important contribution to our understanding of the evolution and functioning of the human brain.




Neuro-Robotics


Book Description

Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.




Broken Movement


Book Description

An account of the neurobiology of motor recovery in the arm and hand after stroke by two experts in the field. Stroke is a leading cause of disability in adults and recovery is often difficult, with existing rehabilitation therapies largely ineffective. In Broken Movement, John Krakauer and S. Thomas Carmichael, both experts in the field, provide an account of the neurobiology of motor recovery in the arm and hand after stroke. They cover topics that range from behavior to physiology to cellular and molecular biology. Broken Movement is the only accessible single-volume work that covers motor control and motor learning as they apply to stroke recovery and combines them with motor cortical physiology and molecular biology. The authors cast a critical eye at current frameworks and practices, offer new recommendations for promoting recovery, and propose new research directions for the study of brain repair. Krakauer and Carmichael discuss such subjects as the behavioral phenotype of hand and arm paresis in human and non-human primates; the physiology and anatomy of the motor system after stroke; mechanisms of spontaneous recovery; the time course of early recovery; the challenges of chronic stroke; and pharmacological and stem cell therapies. They argue for a new approach in which patients are subjected to higher doses and intensities of rehabilitation in a more dynamic and enriching environment early after stroke. Finally they review the potential of four areas to improve motor recovery: video gaming and virtual reality, invasive brain stimulation, re-opening the sensitive period after stroke, and the application of precision medicine.




Encyclopedia of Neuroscience, Volume 1


Book Description

The Encyclopedia of the Neuroscience explores all areas of the discipline in its focused entries on a wide variety of topics in neurology, neurosurgery, psychiatry and other related areas of neuroscience. Each article is written by an expert in that specific domain and peer reviewed by the advisory board before acceptance into the encyclopedia. Each article contains a glossary, introduction, a reference section, and cross-references to other related encyclopedia articles. Written at a level suitable for university undergraduates, the breadth and depth of coverage will appeal beyond undergraduates to professionals and academics in related fields.




Neuromechanics of Human Movement


Book Description

Neuromechanics of Human Movement, Sixth Edition, draws on the disciplines of neurophysiology and physics to explore how the nervous system controls the actions of muscles to produce human motion in relation to biomechanical principles




Biological Learning and Control


Book Description

A novel theoretical framework that describes a possible rationale for the regularity in how we move, how we learn, and how our brain predicts events. In Biological Learning and Control, Reza Shadmehr and Sandro Mussa-Ivaldi present a theoretical framework for understanding the regularity of the brain's perceptions, its reactions to sensory stimuli, and its control of movements. They offer an account of perception as the combination of prediction and observation: the brain builds internal models that describe what should happen and then combines this prediction with reports from the sensory system to form a belief. Considering the brain's control of movements, and variations despite biomechanical similarities among old and young, healthy and unhealthy, and humans and other animals, Shadmehr and Mussa-Ivaldi review evidence suggesting that motor commands reflect an economic decision made by our brain weighing reward and effort. This evidence also suggests that the brain prefers to receive a reward sooner than later, devaluing or discounting reward with the passage of time; then as the value of the expected reward changes in the brain with the passing of time (because of development, disease, or evolution), the shape of our movements will also change. The internal models formed by the brain provide the brain with an essential survival skill: the ability to predict based on past observations. The formal concepts presented by Shadmehr and Mussa-Ivaldi offer a way to describe how representations are formed, what structure they have, and how the theoretical concepts can be tested.




Neuromechanics of Human Movement-5th Edition


Book Description

Neuromechanics of Human Movement, Fifth Edition, draws on the disciplines of neurophysiology and physics to explore how the nervous system controls the actions of muscles to produce human motion. This contemporary approach is much different from the traditional approach, which focuses solely on mechanics and does not consider the role of the sensorimotor system in the control of human movement. Authored by Roger Enoka, a widely recognized and esteemed scholar in neuromechanics, this influential text is an essential resource in biomechanics, motor learning, and applied physiology, making complex information accessible to students.




Neurobiology of Language


Book Description

Neurobiology of Language explores the study of language, a field that has seen tremendous progress in the last two decades. Key to this progress is the accelerating trend toward integration of neurobiological approaches with the more established understanding of language within cognitive psychology, computer science, and linguistics. This volume serves as the definitive reference on the neurobiology of language, bringing these various advances together into a single volume of 100 concise entries. The organization includes sections on the field's major subfields, with each section covering both empirical data and theoretical perspectives. "Foundational" neurobiological coverage is also provided, including neuroanatomy, neurophysiology, genetics, linguistic, and psycholinguistic data, and models. - Foundational reference for the current state of the field of the neurobiology of language - Enables brain and language researchers and students to remain up-to-date in this fast-moving field that crosses many disciplinary and subdisciplinary boundaries - Provides an accessible entry point for other scientists interested in the area, but not actively working in it – e.g., speech therapists, neurologists, and cognitive psychologists - Chapters authored by world leaders in the field – the broadest, most expert coverage available