The Contest Problem Book II


Book Description

The annual high school contests have been sponsored since 1950 by the Mathematical Association of America and the Society of Actuaries, and later by Mu Alpha Theta (1965), the National Council of Teachers of Mathematics (1967) and the Casulty Actuarial Society (1971). Problems from the contests during the periods 1950-1960 are published in Volume 5 of the New Mathematical Library, and those for 1966-1972 are published in Volume 25. This volume contains those for the period 1961-1965. The questions were compiled by C.T. Salkind, Chairman of the Committee on High School Contests during the period, who also prepared the solutions for the contest problems. Professor Salkind died in 1968. In preparing this and the other Contest Problem Books, the editors of the NML have expanded these solutions with added alternative solutions.




The Contest Problem Book VI: American High School Mathematics Examinations 1989-1994


Book Description

The Contest Problem Book VI contains 180 challenging problems from the six years of the American High School Mathematics Examinations (AHSME), 1989 through 1994, as well as a selection of other problems. A Problems Index classifies the 180 problems in the book into subject areas: algebra, complex numbers, discrete mathematics, number theory, statistics, and trigonometry.




The Contest Problem Book IX


Book Description

A compilation of 325 problems and solutions for high school students. A valuable resource for any mathematics teacher.




New Mexico Mathematics Contest Problem Book


Book Description

The New Mexico Mathematics Contest for high-school students has been held annually since 1966. Each November, thousands of middle- and high-school students from all over New Mexico converge to battle with elementary but tricky math problems. The 200 highest-scoring students meet for the second round the following February at the University of New Mexico in Albuquerque where they listen to a prominent mathematician give a keynote lecture, have lunch, and then get down to round two, an even more challenging set of mathematical mind-twisters. Liong-shin Hahn was charged with the task of creating a new set of problems each year for the New Mexico Mathematics Contest, 1990-1999. In this volume, Hahn has collected the 138 best problems to appear in these contests over the last decades. They range from the simple to the highly challenging--none are trivial. The solutions contain many clever analyses and often display uncommon ingenuity. His questions are always interesting and relevant to teenage contestants. Young people training for competitions will not only learn a great deal of useful mathematics from this book but, and this is much more important, they will take a step toward learning to love mathematics.




Think Like a Programmer


Book Description

The real challenge of programming isn't learning a language's syntax—it's learning to creatively solve problems so you can build something great. In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to: –Split problems into discrete components to make them easier to solve –Make the most of code reuse with functions, classes, and libraries –Pick the perfect data structure for a particular job –Master more advanced programming tools like recursion and dynamic memory –Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.




First Steps for Math Olympians


Book Description

A major aspect of mathematical training and its benefit to society is the ability to use logic to solve problems. The American Mathematics Competitions have been given for more than fifty years to millions of students. This book considers the basic ideas behind the solutions to the majority of these problems, and presents examples and exercises from past exams to illustrate the concepts. Anyone preparing for the Mathematical Olympiads will find many useful ideas here, but people generally interested in logical problem solving should also find the problems and their solutions stimulating. The book can be used either for self-study or as topic-oriented material and samples of problems for practice exams. Useful reading for anyone who enjoys solving mathematical problems, and equally valuable for educators or parents who have children with mathematical interest and ability.




Hungarian Problem Book IV


Book Description

Forty-eight challenging problems from the oldest high school mathematics competition in the world. This book is a continuation of Hungarian Problem Book III and takes the contest from 1944 through to 1963. This book is intended for beginners, although the experienced student will find much here.




The Contest Problem Book VII


Book Description

Chronicles 275 problems from the American Mathematics Competitions (AMC 12 and AMC 10) for the years 1995 through 2000, including the 50th Anniversary AHSME issued in 1999. Twenty-three additional problems with solutions are included.