The Contest Problem Book VI: American High School Mathematics Examinations 1989-1994


Book Description

The Contest Problem Book VI contains 180 challenging problems from the six years of the American High School Mathematics Examinations (AHSME), 1989 through 1994, as well as a selection of other problems. A Problems Index classifies the 180 problems in the book into subject areas: algebra, complex numbers, discrete mathematics, number theory, statistics, and trigonometry.




The Contest Problem Book VII: American Mathematics Competitions, 1995–2000 Contests


Book Description

This is the seventh book of problems and solutions from the Mathematics Competitions. Contest Problem Book VII chronicles 275 problems from the American Mathematics Contests (AMC 12 and AMC 10 for the years 1995 through 2000, including the 50th Anniversary AHSME issued in 1999). Twenty-three additional problems with solutions are included. A Problem Index classifies the 275 problems in to the following subject areas: Algebra, Complex Numbers, Discrete Mathematics (including Counting Problems), Logic, and Discrete Probability, Geometry (including Three Dimensional Geometry), Number Theory (including Divisibility, Representation, and Modular Arithmetic), Statistics, and Trigonometry. For over 50 years many excellent exams have been prepared by individuals throughout our mathematical community in the hope that all secondary school students will have an opportunity to participate in these problem solving and enriching mathematics experiences. The American Mathematics Contests are intended for everyone from the average student at a typical school who enjoys mathematics to the very best student at the most special school.




New Mexico Mathematics Contest Problem Book


Book Description

The New Mexico Mathematics Contest for high-school students has been held annually since 1966. Each November, thousands of middle- and high-school students from all over New Mexico converge to battle with elementary but tricky math problems. The 200 highest-scoring students meet for the second round the following February at the University of New Mexico in Albuquerque where they listen to a prominent mathematician give a keynote lecture, have lunch, and then get down to round two, an even more challenging set of mathematical mind-twisters. Liong-shin Hahn was charged with the task of creating a new set of problems each year for the New Mexico Mathematics Contest, 1990-1999. In this volume, Hahn has collected the 138 best problems to appear in these contests over the last decades. They range from the simple to the highly challenging--none are trivial. The solutions contain many clever analyses and often display uncommon ingenuity. His questions are always interesting and relevant to teenage contestants. Young people training for competitions will not only learn a great deal of useful mathematics from this book but, and this is much more important, they will take a step toward learning to love mathematics.




The Contest Problem Book VIII


Book Description

For more than 50 years, the Mathematical Association of America has been engaged in the construction and administration of challenging contests for students in American and Canadian high schools. The problems for these contests are constructed in the hope that all high school students interested in mathematics will have the opportunity to participate in the contests and will find the experience mathematically enriching. These contests are intended for students at all levels, from the average student at a typical school who enjoys mathematics to the very best students at the most special school. In the year 2000, the Mathematical Association of America initiated the American Mathematics Competitions 10 (AMC 10) for students up to grade 10. The Contest Problem Book VIII is the first collection of problems from that competition covering the years 2001–2007. J. Douglas Faires and David Wells were the joint directors of the AMC 10 and AMC 12 during that period, and have assembled this book of problems and solutions. There are 350 problems from the first 14 contests included in this collection. A Problem Index at the back of the book classifies the problems into the following major subject areas: Algebra and Arithmetic, Sequences and Series, Triangle Geometry, Circle Geometry, Quadrilateral Geometry, Polygon Geometry, Counting Coordinate Geometry, Solid Geometry, Discrete Probability, Statistics, Number Theory, and Logic. The major subject areas are then broken down into subcategories for ease of reference. The problems are cross-referenced when they represent several subject areas.




The Contest Problem Book IX


Book Description

This is the ninth book of problems and solutions from the American Mathematics Competitions (AMC) contests. It chronicles 325 problems from the thirteen AMC 12 contests given in the years between 2001 and 2007. The authors were the joint directors of the AMC 12 and the AMC 10 competitions during that period. The problems have all been edited to ensure that they conform to the current style of the AMC 12 competitions. Graphs and figures have been redrawn to make them more consistent in form and style, and the solutions to the problems have been both edited and supplemented. A problem index at the back of the book classifies the problems into subject areas of Algebra, Arithmetic, Complex Numbers, Counting, Functions, Geometry, Graphs, Logarithms, Logic, Number Theory, Polynomials, Probability, Sequences, Statistics, and Trigonometry. A problem that uses a combination of these areas is listed multiple times. The problems on these contests are posed by members of the mathematical community in the hope that all secondary school students will have an opportunity to participate in problem-solving and an enriching mathematical experience.




The Riemann Hypothesis


Book Description

This book introduces interested readers to one of the most famous and difficult open problems in mathematics: the Riemann Hypothesis. Finding a proof will not only make you famous, but also earns you a one million dollar prize. The book originated from an online internet course at the University of Amsterdam for mathematically talented secondary school students. Its aim was to bring them into contact with challenging university level mathematics and show them why the Riemann Hypothesis is such an important problem in mathematics. After taking this course, many participants decided to study in mathematics at university.




Exercises in (Mathematical) Style


Book Description

What does style mean in mathematics? Style is both how one does something and how one communicates what was done. In this book, the author investigates the worlds of the well-known numbers, the binomial coefficients. The author follows the example of Raymond Queneau's Exercises in Style. Offering the reader 99 stories in various styles. The book celebrates the joy of mathematics and the joy of writing mathematics by exploring the rich properties of this familiar collection of numbers. For any one interested in mathematics, from high school students on up.




Invitation to Number Theory


Book Description

Number theory is the branch of mathematics concerned with the counting numbers, 1, 2, 3, … and their multiples and factors. Of particular importance are odd and even numbers, squares and cubes, and prime numbers. But in spite of their simplicity, you will meet a multitude of topics in this book: magic squares, cryptarithms, finding the day of the week for a given date, constructing regular polygons, pythagorean triples, and many more. In this revised edition, John Watkins and Robin Wilson have updated the text to bring it in line with contemporary developments. They have added new material on Fermat's Last Theorem, the role of computers in number theory, and the use of number theory in cryptography, and have made numerous minor changes in the presentation and layout of the text and the exercises.




Portal through Mathematics: Journey to Advanced Thinking


Book Description

Portal through Mathematics is a collection of puzzles and problems mostly on topics relating to secondary mathematics. The problems and topics are fresh and interesting and frequently surprising. One example: the puzzle that asks how much length must be added to a belt around the Earth's equator to raise it one foot has probably achieved old chestnut status. Ivanov, after explaining the surprising answer to this question, goes a step further and asks, if you grabbed that too long belt at some point and raised it as high as possible, how high would that be? The answer to that is more surprising than the classic puzzle's answer. The book is organized into 29 themes, each a topic from algebra, geometry or calculus and each launched from an opening puzzle or problem. There are excursions into number theory, solid geometry, physics and combinatorics. Always there is an emphasis on surprise and delight. And every theme begins at a level approachable with minimal background requirements. With well over 250 puzzles and problems, there is something here sure to appeal to everyone. Portal through Mathematics will be useful for prospective secondary teachers of mathematics and may be used (as a supplementary resource) in university courses in algebra, geometry, calculus, and discrete mathematics. It can also be used for professional development for teachers looking for inspiration. However, the intended audience is much broader. Every fan of mathematics will find enjoyment in it.




Elementary Cryptanalysis


Book Description

An introduction to the basic mathematical techniques involved in cryptanalysis.