Handbook of Nanophysics


Book Description

Many bottom-up and top-down techniques for nanomaterial and nanostructure generation have enabled the development of applications in nanoelectronics and nanophotonics. Handbook of Nanophysics: Nanoelectronics and Nanophotonics explores important recent applications of nanophysics in the areas of electronics and photonics. Each peer-reviewed c




Principles of Polymer Systems, Sixth Edition


Book Description

Maintaining a balance between depth and breadth, the Sixth Edition of Principles of Polymer Systems continues to present an integrated approach to polymer science and engineering. A classic text in the field, the new edition offers a comprehensive exploration of polymers at a level geared toward upper-level undergraduates and beginning graduate students. Revisions to the sixth edition include: A more detailed discussion of crystallization kinetics, strain-induced crystallization, block copolymers, liquid crystal polymers, and gels New, powerful radical polymerization methods Additional polymerization process flow sheets and discussion of the polymerization of polystyrene and poly(vinyl chloride) New discussions on the elongational viscosity of polymers and coarse-grained bead-spring molecular and tube models Updated information on models and experimental results of rubber elasticity Expanded sections on fracture of glassy and semicrystalline polymers New sections on fracture of elastomers, diffusion in polymers, and membrane formation New coverage of polymers from renewable resources New section on X-ray methods and dielectric relaxation All chapters have been updated and out-of-date material removed. The text contains more theoretical background for some of the fundamental concepts pertaining to polymer structure and behavior, while also providing an up-to-date discussion of the latest developments in polymerization systems. Example problems in the text help students through step-by-step solutions and nearly 300 end-of-chapter problems, many new to this edition, reinforce the concepts presented.







Molecular Photonics


Book Description

New organic compounds with interesting and improved electronic and photonic properties are being reported on a daily basis, with new light-triggered materials being designed for molecular and bioelectronic devices. The relatively new concept of molecular photonics embraces photochemistry and photophysics, dealing with light-induced changes in materials and their electronic states as well as the field of optics. This volume begins with a background and survey of current light-related research fields, moving on to the fundamentals of molecular photonics. Subsequent chapters deal with the characteristics of photochemical reaction and typical processes of photophysical chemistry, while the last two chapters focus on the study of materials-induced changes in light. The most important concepts are summarized in overview tables to promote active understanding of new topics. .







Encyclopedia of Chemical Processing


Book Description

Supplying nearly 350 expertly-written articles on technologies that can maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques, this second edition provides gold standard articles on the methods, practices, products, and standards recently influencing the chemical industries. New material includes: design of key unit operations involved with chemical processes; design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; current industry practices; and pilot plant design and scale-up criteria.




Infrared Spectroscopy Studies of Electron Induced Reaction Mechanisms in EUV Photoresists


Book Description

Extreme ultraviolet (EUV) lithography, with approximately 13.5 nm photons is the new standard of the semiconductor industry. The use of EUV photons allows for further miniaturization of integrated circuits, enabling industry and researchers alike to explore the 1 – 10 nm regime. Despite the desire to begin mass producing devices with EUV tools by 2020, a clear direction for the best EUV capable photoresists is not understood. In this dissertation, a novel class photoresist material is investigated to understand key areas of their reaction mechanisms for next-generation photolithography. These photoresists are composed of a hybrid nanocluster architecture with a small HfOx core surrounded by methacrylic acid ligand (HfMAA) and can achieve high sensitivity and etch-resistance due to their small molecular nature, high-absorption metal core, and ease of ligand tunability. However, many aspects about their properties and reactivity are still poorly understood. To investigate the reaction mechanisms, the photoresists were probed with a bream of energetic electrons, corresponding to primary and secondary energies produced during EUV ionizations. Their chemical transformation upon electron irradiation, along with the effects of annealing, were tracked using in situ infrared (IR) spectroscopy. After post-application bake (PAB) to 105 °C, the IR spectra show the formation of new Hf-O-Hf bonds through the consumption of terminal hydroxyl groups. This bond formation negatively affects the intrinsic solubility characteristic of the photoresists. Additionally, a crosslinking pathway is initiated by a decarboxylation mechanism of the methacrylate ligands (MAA) under electron irradiation. To understand further the role of secondary electrons in HfMAA, a ligand exchange procedure was employed to change ~20% of the MAA with 4-hydrobenzoic acid (HBA) and phenyl acetic acid (PAA). In situ IR spectroscopy was used to monitor the amount of alkyl CH produced by both 90 and 20 eV electron irradiations. The addition of the co-ligand enhanced the secondary electron sensitivity by 40% when compared to HfMAA. In addition, using mass spectrometry, two different reaction pathways are observed for each co-ligand due to the benzene ring of each ligand decomposes differently. Finally, a number of fundamental studies were performed to investigate EUV/electron-induced resist chemistry in thin-film model systems. Using methacrylic acid (MAA), isobutyric acid (IBA), and 4-hydrobenzoic acid (HBA) as prototypical probe molecules, we find spectroscopic evidence for a decarboxylation mechanism among each of the grafted carboxylate molecules. Differences in selection rules for EUV absorption vs impact ionization for 90 eV electrons are found to play an important role in the reactivity of ligands with different metal centers. Lastly, ab initio model calculations are compared to experimental data and demonstrate their potential use to screen reactivity of different carboxylate ligands and provide validation of first principles method for predicting reactivity of candidate resist chemistries. Additionally, we successfully grafted trivinyl-, dimethylsilamine on SiO2 to fundamentally study the effect of electron irradiation of organosilane based molecules. Results show with FTIR spectroscopy we can study reactivity of the silicon-vinyl groups by spin coating a thin siloxane based polymer layer on top of the monolayer. We demonstrated interaction between the two layers can occur with electron irradiation through the formation of Si-C and Si-O bonds.




Polymers and Electromagnetic Radiation


Book Description

This first book to cover the interaction of polymers with radiation from the entire electromagnetic spectrum adopts a multidisciplinary approach to bridge polymer chemistry and physics, photochemistry, photophysics and materials science. The text is equally unique in its scope, devoting equal amounts of attention to the three aspects of synthesis, characterization, and applications. The first part deals with the interaction of polymers with non-ionizing radiation in the frequency-range from sub-terahertz via infrared radiation to visible and ultraviolet light, while the second covers interaction with ionizing radiation from the extreme ultraviolet to ?-ray photons. The result is a systematic overview of how both types of radiation can be used for different polymerization approaches, spectroscopy methods and lithography techniques. Authored by a world-renowned researcher and teacher with over 40 years of experience in the field, this is a highly practical and authoritative guide.