The Data Vault Guru


Book Description

The data vault methodology presents a unique opportunity to model the enterprise data warehouse using the same automation principles applicable in today's software delivery, continuous integration, continuous delivery and continuous deployment while still maintaining the standards expected for governing a corporation's most valuable asset: data. This book provides at first the landscape of a modern architecture and then as a thorough guide on how to deliver a data model that flexes as the enterprise flexes, the data vault. Whether the data is structured, semi-structured or even unstructured one thing is clear, there is always a model either applied early (schema-on-write) or applied late (schema-on-read). Today's focus on data governance requires that we know what we retain about our customers, the data vault provides that focus by delivering a methodology focused on all aspects about the customer and provides some of the best practices for modern day data compliance.The book will delve into every data vault modelling artefact, its automation with sample code, raw vault, business vault, testing framework, a build framework, sample data vault models, how to build automation patterns on top of a data vault and even offer an extension of data vault that provides automated timeline correction, not to mention variation of data vault designed to provide audit trails, metadata control and integration with agile delivery tools.




Building a Scalable Data Warehouse with Data Vault 2.0


Book Description

The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0




An Introduction to Agile Data Engineering Using Data Vault 2. 0


Book Description

The world of data warehousing is changing. Big Data & Agile are hot topics. But companies still need to collect, report, and analyze their data. Usually this requires some form of data warehousing or business intelligence system. So how do we do that in the modern IT landscape in a way that allows us to be agile and either deal directly or indirectly with unstructured and semi structured data?The Data Vault System of Business Intelligence provides a method and approach to modeling your enterprise data warehouse (EDW) that is agile, flexible, and scalable. This book will give you a short introduction to Agile Data Engineering for Data Warehousing and Data Vault 2.0. I will explain why you should be trying to become Agile, some of the history and rationale for Data Vault 2.0, and then show you the basics for how to build a data warehouse model using the Data Vault 2.0 standards.In addition, I will cover some details about the Business Data Vault (what it is) and then how to build a virtual Information Mart off your Data Vault and Business Vault using the Data Vault 2.0 architecture.So if you want to start learning about Agile Data Engineering with Data Vault 2.0, this book is for you.




Agile Data Warehouse Design


Book Description

Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.




Agile Analytics


Book Description

Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.




The Elephant in the Fridge


Book Description

You want the rigor of good data architecture at the speed of agile? Then this is the missing link - your step-by-step guide to Data Vault success. Success with a Data Vault starts with the business and ends with the business. Sure, there's some technical stuff in the middle, and it is absolutely essential - but it's not sufficient on its own. This book will help you shape the business perspective, and weave it into the more technical aspects of Data Vault modeling. You can read the foundational books and go on courses, but one massive risk still remains. Dan Linstedt, the founder of the Data Vault, very clearly directs those building a Data Vault to base its design on an "enterprise ontology". And Hans Hultgren similarly stresses the importance of the business concepts model. So it's important. We get that. But: What on earth is an enterprise ontology/business concept model, 'cause I won't know if I've got one if I don't know what I'm looking for? If I can't find one, how do I get my hands on such a thing? Even if I have one of these wonderful things, how do I apply it to get the sort of Data Vault that's recommended? It's actually not as hard as some would fear to answer all of these questions, and it's certainly worth the effort. This book just might save you a world of pain. It's a supplement to other material on Data Vault modeling, but it's the vital missing link to finding simplicity for Data Vault success.




Modeling the Agile Data Warehouse with Data Vault


Book Description

Data Modeling for Agile Data Warehouse using Data Vault Modeling Approach. Includes Enterprise Data Warehouse Architecture. This is a complete guide to the data vault data modeling approach. The book also includes business and program considerations for the agile data warehousing and business intelligence program. There are over 200 diagrams and figures concerning modeling, core business concepts, architecture, business alignment, semantics, and modeling comparisons with 3NF and Dimensional modeling.




Data Pipelines with Apache Airflow


Book Description

This book teaches you how to build and maintain effective data pipelines. Youll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. --




Data Mesh


Book Description

Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.




Think Like a Data Scientist


Book Description

Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away