The Decision Intelligence Handbook


Book Description

Decision intelligence is one of the top strategic technology trends for 2022. According to Gartner, more than a third of today's large organizations are expected to be practicing the discipline by 2023. But despite the growing consensus that decision intelligence offers great value to decision-makers, there's been little practical hands-on guidance on how to implement it. With this book, Lorien Pratt and Nadine Malcolm from Quantellia offer a practical methodology for understanding an action-to-outcome decision. The methodology includes a set of business processes for finding data that drives the decision, presenting data in a way that's useful for decision-makers, and showing decision-makers how to monitor and tailor the decision over time. This handbook addresses three problems that are ubiquitous in data-driven decision-making: How can decision-makers identify the data they need to support their decisions? How can you use data assets available to support a decision to show how a decision's outcomes depend on the actions taken by the decision-maker? How can decision-makers assess their decisions and improve organizational decision-making over time?




The Decision Intelligence Handbook


Book Description

Decision intelligence (DI) has been widely named as a top technology trend for several years, and Gartner reports that more than a third of large organizations are adopting it. Some even say that DI is the next step in the evolution of AI. Many software vendors offer DI solutions today, as they help organizations implement their evidence-based or data-driven decision strategies. But until now, there has been little practical guidance for organizations to formalize decision making and integrate their decisions with data. With this book, authors L. Y. Pratt and N. E. Malcolm fill this gap. They present a step-by-step method for integrating technology into decisions that bridge from actions to desired outcomes, with a focus on systems that act in an advisory, human-in-the-loop capacity to decision makers. This handbook addresses three widespread data-driven decision-making problems: How can decision makers use data and technology to ensure desired outcomes? How can technology teams communicate effectively with decision makers to maximize the return on their data and technology investments? How can organizational decision makers assess and improve their decisions over time?




Link


Book Description

Why aren't the most powerful new technologies being used to solve the world's most important problems: hunger, poverty, conflict, employment, disease? In Link, Dr. Lorien Pratt answers these questions by exploring the solution that is emerging worldwide to take Artificial Intelligence to the next level: Decision Intelligence.




Handbook of Decision Analysis


Book Description

A ONE-OF-A-KIND GUIDE TO THE BEST PRACTICES IN DECISION ANALYSIS Decision analysis provides powerful tools for addressing complex decisions that involve uncertainty and multiple objectives, yet most training materials on the subject overlook the soft skills that are essential for success in the field. This unique resource fills this gap in the decision analysis literature and features both soft personal/interpersonal skills and the hard technical skills involving mathematics and modeling. Readers will learn how to identify and overcome the numerous challenges of decision making, choose the appropriate decision process, lead and manage teams, and create value for their organization. Performing modeling analysis, assessing risk, and implementing decisions are also addressed throughout. Additional features include: Key insights gleaned from decision analysis applications and behavioral decision analysis research Integrated coverage of the techniques of single- and multiple-objective decision analysis Multiple qualitative and quantitative techniques presented for each key decision analysis task Three substantive real-world case studies illustrating diverse strategies for dealing with the challenges of decision making Extensive references for mathematical proofs and advanced topics The Handbook of Decision Analysis is an essential reference for academics and practitioners in various fields including business, operations research, engineering, and science. The book also serves as a supplement for courses at the upper-undergraduate and graduate levels.




The Cambridge Handbook of Artificial Intelligence


Book Description

An authoritative, up-to-date survey of the state of the art in artificial intelligence, written for non-specialists.




Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries


Book Description

With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.




The Cambridge Handbook of Artificial Intelligence


Book Description

The technology and application of artificial intelligence (AI) throughout society continues to grow at unprecedented rates, which raises numerous legal questions that to date have been largely unexamined. Although AI now plays a role in almost all areas of society, the need for a better understanding of its impact, from legal and ethical perspectives, is pressing, and regulatory proposals are urgently needed. This book responds to these needs, identifying the issues raised by AI and providing practical recommendations for regulatory, technical, and theoretical frameworks aimed at making AI compatible with existing legal rules, principles, and democratic values. An international roster of authors including professors of specialized areas of law, technologists, and practitioners bring their expertise to the interdisciplinary nature of AI.




The Decision Maker's Handbook to Data Science


Book Description

Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics.Become skilled at thinking like a data scientist, without being one.Discover how to hire and manage data scientists.Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science.




The AI Book


Book Description

Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important




Applied Artificial Intelligence


Book Description

This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.