Characterization and Modeling of Sic Multi-Chip Power Modules


Book Description

The accelerating commercialization of wide bandgap technology has led to increased demand for accurate circuit-level simulation models of devices such as Silicon-Carbide (SiC) MOSFET power modules. These models assist with optimizing systems to minimize overshoot and electromagnetic interference (EMI) associated with wide bandgap (WBG) switching conditions. As a result, capturing these behaviors requires more detailed and advanced modeling and characterization techniques than traditional Silicon (Si) semiconductors. These advancements include improvements to the parasitic package model, transistor characterization, and computational efficiency of the synthesized model. In this dissertation, a commercially available half-bridge SiC power module is characterized and modeled in SPICE. Simulation and empirical characterization techniques are used to quantify the packaging parasitics of the module. These parasitics include self-inductances, mutual coupling terms, and baseplate capacitances (BPC) that are sensitive to the high di/dt and dv/dt events that occur during switching transitions. The simulation predictions and empirical measurements are used to cross-validate each other and determine the preferred method for quantifying each parasitic parameter. The SiC transistors are characterized using a combination of commercial equipment and custom measurement techniques. The characterization process is described in detail and sensitivities are uncovered in that are crucial to the modeling effort. The characterization includes an advanced conduction analysis (ACA) system that combined with a self-heating removal algorithm is capable of quantifying the short-channel behavior of the device at high voltage. Finally, the package model and SiC MOSFET characteristics are used to synthesize a compact behavioral model. The model is evaluated in terms of its accuracy through comparison of quantitative error metrics across a wide range of double pulse test (DPT) operating conditions. The model is also evaluated in a multi-level inverter simulation to determine its computational efficiency and convergence behavior. It is shown that the model is highly accurate across the selected range of operating conditions and is capable of converging quickly in complex circuit topologies.




Multichip Module Technology Handbook


Book Description

MCMs are electronic components that house multiple integrated circuits (ICs) upon a single chip. Their use in design allow systems that are faster, hotter and more reliable than those built with standalone ICs. More and more, the speed needs of electronic systems require MCMs. This comprehensive handbook aims to provide designers with the knowledge needed to understand and work with MCMs.







Failure Analysis


Book Description

Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.




Basic Electronic Instrument Handbook


Book Description

Introduction to instrumentation. Fundamentals of electronic-measurement instruments. Fundamentals of signal-generation instruments. Using electronic instruments. Instrumentation systems. Current- and voltage-measurement devices. Circuit-element measuring instruments. Signal-generation instruments. Frequency- and time-measurement instruments. Recording instruments. Special-function instruments. Microwave passive devices.




Low Power Digital CMOS Design


Book Description

Power consumption has become a major design consideration for battery-operated, portable systems as well as high-performance, desktop systems. Strict limitations on power dissipation must be met by the designer while still meeting ever higher computational requirements. A comprehensive approach is thus required at all levels of system design, ranging from algorithms and architectures to the logic styles and the underlying technology. Potentially one of the most important techniques involves combining architecture optimization with voltage scaling, allowing a trade-off between silicon area and low-power operation. Architectural optimization enables supply voltages of the order of 1 V using standard CMOS technology. Several techniques can also be used to minimize the switched capacitance, including representation, optimizing signal correlations, minimizing spurious transitions, optimizing sequencing of operations, activity-driven power down, etc. The high- efficiency of DC-DC converter circuitry required for efficient, low-voltage and low-current level operation is described by Stratakos, Sullivan and Sanders. The application of various low-power techniques to a chip set for multimedia applications shows that orders-of-magnitude reduction in power consumption is possible. The book also features an analysis by Professor Meindl of the fundamental limits of power consumption achievable at all levels of the design hierarchy. Svensson, of ISI, describes emerging adiabatic switching techniques that can break the CV2f barrier and reduce the energy per computation at a fixed voltage. Srivastava, of AT&T, presents the application of aggressive shut-down techniques to microprocessor applications.




Gas Turbines and Jet Propulsion


Book Description




Construction Project Management


Book Description

Construction Project Management deals with different facets of construction management emphasizing the basic concepts that any engineering student is supposed to know. The major principles of project management have been derived through real life case studies from the field. Simplified examples have been used to facilitate better understanding of the concepts before going into the large and complex problems. The book features computer applications (Primavera and MS Project) used to explain planning, scheduling, resource leveling, monitoring and reporting; it is highly illustrated with line dia.