The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades


Book Description

This thesis describes the development of a new technique to solve an important industrial inspection requirement for a high-value jet-engine component. The work – and the story told in the thesis – stretches all the way from the fundamentals of wave propagation in anisotropic material and ultrasonic array imaging through to device production and site trials. The book includes a description of a new method to determine crystallographic orientation from 2D ultrasonic array data. Another new method is described that enables volumetric images of an anisotropic material to be generated from 2D ultrasonic array data, based on measured crystallographic orientation. After extensive modeling, a suitable 2D array and deployment fixtures were manufactured and tested on in situ turbine blades in real engines. The final site trial indicated an order of magnitude improvement over the best existing technique in the detectability of a certain type of root cracking. The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades should be an inspiration for those starting out on doctoral degrees as it shows the complete development cycle from basic science to industrial usage.




Fundamentals of Ultrasonic Testing


Book Description

Focusing on the theory and state-of-the-art technologies of ultrasonic testing (UT), this book examines ultrasonic propagation in solids and its detection applications, and explores the intersection of UT technology with various fields of electromagnetics, optics and physics. UT is one of the most widely used nondestructive testing techniques due to its high performance in terms of detection efficiency and safety. The rapid development of modern industrial products and technologies has created a new challenge and demand for ultrasonic nondestructive testing technology. This book introduces the fundamentals of UT, including sound wave and sound field, interface wave theory and liquid-solid coupled sound field. It then discusses various types of UT methods, ranging from the critically refracted longitudinal wave method to ultrasonic surface wave and ultrasonic guided wave detection methods. Some newly developed UT techniques are also discussed, including phased-array UT, high-frequency UT and non-contact UT. This title will appeal to engineering students and technicians in the field of ultrasonic nondestructive testing.




Methods and Techniques of Signal Processing in Physical Measurements


Book Description

This book discusses selected issues of modern electrical metrology in the fields of sensor technology, signal processing and measurement systems, addressing theoretical problems and applications regarding measurements in electrical engineering, mechanics, telecommunications, medicine and geology, as well as in the aviation and transport industries. It presents selected papers from the XXII International Seminar of Metrology “Methods and Techniques of Signal Processing in Physical Measurements” (MSM2018) held in Rzeszów-Arłamów, Poland on September 17–20, 2018. The conference was organized by the Rzeszow University of Technology, Department of Metrology and Diagnostic Systems (Poland) and Lviv Polytechnic National University, Department of Information Measuring Technology (Ukraine). The book provides researchers and practitioners with insights into the state of the art in these areas, and also serves as a source of new ideas for further development and cooperation.







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.







Ultrasonic Testing of Materials


Book Description

The amendments of this third English edition with respect to the second one concern beside some printing errors the replacement of some pictures in part D by more modern ones and updating the list of stand ards to the state of the fourth German edition. J OSEF KRAUTKRÄMER Cologne, January 1983 Preface to the Second Edition This seeond English edition is based on the third German edition. In view of most recent teehnologieal advanees it has beeome neeessary in many instanees to supplement the seeond German edition and to revise some parts completely. In addition to piezo-eleetric methods, others are now also extensively diseussed in Chapter 8. As for the intensity method, ultrasonie holo graphy is treated in the new Seetion 9. 4. In Part B, for reasons of syste maties, the resonanee method has been ineluded under transit-time methods. It appeared neeessary to elaborate in greater detail the defini tion of the properties of pulse-echo testing equipment and their measure ments (10. 4). The more recent findings of pulse speetroscopy (5. 6) and sound-emission analysis (12) are mentioned only in passing because their significanee is still controversial. Apart from numerous additions, partieularly those coneerning automatie testing installations, Part C also eontains a new chapter whieh deals with tests on nu eIe ar reactors (28), as weIl as abrief diseussion of surfaee-hardness tests (32. 4). It beeame impossible to include a critieal analysis of the principal standards in Chapter 33.







Turbine Blade Investment Casting Die Technology


Book Description

Focusing on the theory and techniques of digital design and manufacturing for turbine blade investment casting, this book systematically summarizes the advances in applications in this field. It describes advanced digital design theory and methods and provides practical technical references for investment casting die design and manufacturing. The theories, methods and cases presented here are largely derived from the author’s practical engineering experience and the research he and his team have carried out since the 1990s. It includes academic papers, technical reports and patent literature, and provides a valuable guide to engineers involved in the die-design process. Given its comprehensive coverage, the book makes a significant contribution to investment-casting die design and aero-engine blade manufacturing, while at the same time promoting the development of aero-engine manufacturing technologies