Electro-catalysis At Chemically Modified Solid Surfaces


Book Description

This book documents Professor Jacques Simonet's contribution to building new electrode materials and their related catalytic reactions. Research includes synthesis of new alloys of palladium, discovery of new composite electrodes (including gold- and silver-graphene) and the creation of new materials through judicious cathodic or anodic doping. Additionally, studies demonstrate the malleability and reactivity of previously unused precious and semi-precious metals for the creation of 2D and 3D catalytic materials. Studies key to innovative research show how transition metals may reversibly cathodically insert small size electro-active molecules such as CO2 and O2, and be applied to methods of depollution brought by carbon and nitrogen oxides.Written for practical use, Simonet has provided both theory and tools needed for those aiming to recreate and develop his experiments in electrochemical catalysis and surface modifications. This full publication of research gives graduate and post-graduate students of chemistry, electrochemistry and catalysis an in-depth insight into key historical and modern developments in the field.




Chemically Modified Electrodes


Book Description

With contributions from an international group of expert authors, this book includes the latest trends in tailoring interfacial properties electrochemically. The chapters cover various organic and inorganic compounds, with applications ranging from electrochemistry to nanotechnology and biology. Of interest to physical, surface and electrochemists, materials scientists and physicists.




Enzymatic Bioelectrocatalysis


Book Description

This book covers the fundamental aspects of the electrochemistry and redox enzymes that underlie enzymatic bioelectrocatalysis, in which a redox enzyme reaction is coupled with an electrode reaction. Described here are the basic concept and theoretical aspects of bioelectrocatalysis and the various experimental techniques and materials used to study and characterize related problems. Also included are the various applications of bioelectrocatalysis to bioelectrochemical devices including biosensors, biofuel cells, and bioreactors. This book is a unique source of information in the area of enzymatic bioelectrocatalysis, approaching the subject from a cross-disciplinary point of view.




Electropolymerization


Book Description

In recent years, great focus has been placed upon polymer thin films. These polymer thin films are important in many technological applications, ranging from coatings and adhesives to organic electronic devices, including sensors and detectors. Electrochemical polymerization is preferable, especially if the polymeric product is intended for use as polymer thin films, because electrogeneration allows fine control over the film thickness, an important parameter for fabrication of devices. Moreover, it was demonstrated that it is possible to modify the material properties by parameter control of the electrodeposition process. Electrochemistry is an excellent tool, not only for synthesis, but also for characterization and application of various types of materials. This book provides a timely overview of a current state of knowledge regarding the use of electropolymerization for new materials preparation, including conducting polymers and various possibilities of applications.




Handbook of Electrochemistry


Book Description

Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)




Electropolymerization


Book Description

Providing extensive coverage, including conducting, insulating and electroactive films, this handbook and ready reference deals with introductory topics and fundamentals as well as advanced insights. Clearly structured, in the first part of the book readers learn the fundamentals of electropolymerizatoin for all important types of polymers, mechanisms of film formation and functionalization, while the second part covers a wide range of applications in biochemistry, analytics, photovoltaics, energy and the environment as well as actuators.




Electrochemical Water Splitting


Book Description

Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. The book reviews the fundamental aspects and describes recent research advances. Properties and characterization methods for various types of electrocatalysts are discussed, including noble metals, earth-abundant metals, metal-organic frameworks, carbon nanomaterials and polymers. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.




Designing Nanosensors for Chemical and Biological Applications


Book Description

The present book aims at providing the readers with some of the most recent development of new and advanced materials and their applications as nanosensors. Examples of such materials are ferrocene and cyclodextrines as mediators, ionic liquid crystals, self-assembled monolayers on macro/ nano-structures, perovskite nanomaterials and functionalized carbon materials. The emphasis of the book is devoted to the difference in properties and its relation to the mechanism of detection and specificity.The chapters of this book present the usage of robust, small, sensitive and reliable sensors that take advantage of the growing interest in nano-structures. Different chemical species are taken as good example of the determination of different chemical substances industrially, medically and environmentally.




Encyclopedia of Interfacial Chemistry


Book Description

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions