Lecture Notes on the Discretization of the Boltzmann Equation


Book Description

This book presents contributions on the following topics: discretization methods in the velocity and space, analysis of the conservation properties, asymptotic convergence to the continuous equation when the number of velocities tends to infinity, and application of discrete models. It consists of ten chapters. Each chapter is written by applied mathematicians who have been active in the field, and whose scientific contributions are well recognized by the scientific community.




Fluid Dynamic Applications of the Discrete Boltzmann Equation


Book Description

This book presents applications to several fluid dynamics problems in both the bounded and unbounded domains in the framework of the discrete velocity models of kinetic theory. The proposition of new models for dense gases, gases with multi-components, and gases with chemical reactions are also included. This is an up-to-date book on the applications of the discrete Boltzmann equation.




Kinetic Boltzmann, Vlasov and Related Equations


Book Description

Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions




Lecture Notes On The Discretization Of The Boltzmann Equation


Book Description

This book presents contributions on the following topics: discretization methods in the velocity and space, analysis of the conservation properties, asymptotic convergence to the continuous equation when the number of velocities tends to infinity, and application of discrete models. It consists of ten chapters. Each chapter is written by applied mathematicians who have been active in the field, and whose scientific contributions are well recognized by the scientific community.




Rarefied Gas Dynamics


Book Description

Aimed at both researchers and professionals who deal with this topic in their routine work, this introduction provides a coherent and rigorous access to the field including relevant methods for practical applications. No preceding knowledge of gas dynamics is assumed.




The Lattice Boltzmann Method


Book Description

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.




The Lattice Boltzmann Equation


Book Description

Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.




Lattice-Gas Cellular Automata and Lattice Boltzmann Models


Book Description

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.




Lattice Boltzmann Methods for Shallow Water Flows


Book Description

This book describes a modern numerical technique, a lattice Boltzmann method, for shallow water flows with or without flow turbulence. This method requires only a simple microscopic equation to determine the depth and velocity based on its recovered macroscopic properties. The method is accurate and efficient for simulating complicated flows and flows within complex geometries, so it is becoming a powerful design tool in fluids engineering. The book may be used as a reference for scientists and engineers, a practical guide to the method for consultant organisations, and a textbook for graduates in engineering sciences such as coastal, civil and environmental engineering.




Simplified And Highly Stable Lattice Boltzmann Method: Theory And Applications


Book Description

This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability.This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.