Fluid Dynamic Applications Of The Discrete Boltzmann Equation


Book Description

This book presents applications to several fluid dynamics problems in both the bounded and unbounded domains in the framework of the discrete velocity models of kinetic theory. The proposition of new models for dense gases, gases with multi-components, and gases with chemical reactions are also included. This is an up-to-date book on the applications of the discrete Boltzmann equation.




Lecture Notes on the Discretization of the Boltzmann Equation


Book Description

This book presents contributions on the following topics: discretization methods in the velocity and space, analysis of the conservation properties, asymptotic convergence to the continuous equation when the number of velocities tends to infinity, and application of discrete models. It consists of ten chapters. Each chapter is written by applied mathematicians who have been active in the field, and whose scientific contributions are well recognized by the scientific community.







Fluid Dynamic Applications of the Discrete Boltzmann Equation


Book Description

This book presents applications to several fluid dynamics problems in both the bounded and unbounded domains in the framework of the discrete velocity models of kinetic theory. The proposition of new models for dense gases, gases with multi-components, and gases with chemical reactions are also included. This is an up-to-date book on the applications of the discrete Boltzmann equation.













The Lattice Boltzmann Equation


Book Description

Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.




Introduction To The Lattice Boltzmann Method, An: A Numerical Method For Complex Boundary And Moving Boundary Flows


Book Description

The book introduces the fundamentals and applications of the lattice Boltzmann method (LBM) for incompressible viscous flows. It is written clearly and easy to understand for graduate students and researchers.The book is organized as follows. In Chapter 1, the SRT- and MRT-LBM schemes are derived from the discrete Boltzmann equation for lattice gases and the relation between the LBM and the Navier-Stokes equation is explained by using the asymptotic expansion (not the Chapman-Enskog expansion). Chapter 2 presents the lattice kinetic scheme (LKS) which is an extension method of the LBM and can save memory because of needlessness for storing the velocity distribution functions. In addition, an improved LKS which can stably simulate high Reynolds number flows is presented. In Chapter 3, the LBM combined with the immersed boundary method (IB-LBM) is presented. The IB-LBM is well suitable for moving boundary flows. In Chapter 4, the two-phase LBM is explained from the point of view of the difficulty in computing two-phase flows with large density ratio. Then, a two-phase LBM for large density ratios is presented. In Appendix, sample codes (available for download) are given for users.