Lecture Notes on the Discretization of the Boltzmann Equation


Book Description

This book presents contributions on the following topics: discretization methods in the velocity and space, analysis of the conservation properties, asymptotic convergence to the continuous equation when the number of velocities tends to infinity, and application of discrete models. It consists of ten chapters. Each chapter is written by applied mathematicians who have been active in the field, and whose scientific contributions are well recognized by the scientific community.




Lecture Notes On Mathematical Theory Of The Boltzmann Equation


Book Description

This is a collection of four lectures on some mathematical aspects related to the nonlinear Boltzmann equation. The following topics are dealt with: derivation of kinetic equations, qualitative analysis of the initial value problem, singular perturbation analysis towards the hydrodynamic limit and computational methods towards the solution of problems in fluid dynamics.




Fluid Dynamic Applications of the Discrete Boltzmann Equation


Book Description

This book presents applications to several fluid dynamics problems in both the bounded and unbounded domains in the framework of the discrete velocity models of kinetic theory. The proposition of new models for dense gases, gases with multi-components, and gases with chemical reactions are also included. This is an up-to-date book on the applications of the discrete Boltzmann equation.




Lecture Notes on the Mathematical Theory of Generalized Boltzmann Models


Book Description

This book is based on the idea that Boltzmann-like modelling methods can be developed to design, with special attention to applied sciences, kinetic-type models which are called generalized kinetic models. In particular, these models appear in evolution equations for the statistical distribution over the physical state of each individual of a large population. The evolution is determined both by interactions among individuals and by external actions. Considering that generalized kinetic models can play an important role in dealing with several interesting systems in applied sciences, the book provides a unified presentation of this topic with direct reference to modelling, mathematical statement of problems, qualitative and computational analysis, and applications. Models reported and proposed in the book refer to several fields of natural, applied and technological sciences. In particular, the following classes of models are discussed: population dynamics and socio-economic behaviours, models of aggregation and fragmentation phenomena, models of biology and immunology, traffic flow models, models of mixtures and particles undergoing classic and dissipative interactions.




A Quest Towards a Mathematical Theory of Living Systems


Book Description

This monograph aims to lay the groundwork for the design of a unified mathematical approach to the modeling and analysis of large, complex systems composed of interacting living things. Drawing on twenty years of research in various scientific fields, it explores how mathematical kinetic theory and evolutionary game theory can be used to understand the complex interplay between mathematical sciences and the dynamics of living systems. The authors hope this will contribute to the development of new tools and strategies, if not a new mathematical theory. The first chapter discusses the main features of living systems and outlines a strategy for their modeling. The following chapters then explore some of the methods needed to potentially achieve this in practice. Chapter Two provides a brief introduction to the mathematical kinetic theory of classical particles, with special emphasis on the Boltzmann equation; the Enskog equation, mean field models, and Monte Carlo methods are also briefly covered. Chapter Three uses concepts from evolutionary game theory to derive mathematical structures that are able to capture the complexity features of interactions within living systems. The book then shifts to exploring the relevant applications of these methods that can potentially be used to derive specific, usable models. The modeling of social systems in various contexts is the subject of Chapter Five, and an overview of modeling crowd dynamics is given in Chapter Six, demonstrating how this approach can be used to model the dynamics of multicellular systems. The final chapter considers some additional applications before presenting an overview of open problems. The authors then offer their own speculations on the conceptual paths that may lead to a mathematical theory of living systems hoping to motivate future research activity in the field. A truly unique contribution to the existing literature, A Quest Toward a Mathematical Theory of Living Systems is an important book that will no doubt have a significant influence on the future directions of the field. It will be of interest to mathematical biologists, systems biologists, biophysicists, and other researchers working on understanding the complexities of living systems.




Handbook of Mathematical Fluid Dynamics


Book Description

The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.




Physics Briefs


Book Description




Analysis of Systems of Conservation Laws


Book Description

Systems of partial differential equations reflecting conservation laws hold significant relevance to a variety of theoretical and practical applications, including compressible fluid flow, electromagnetism, elasticity theory, and other areas of continuum mechanics. This field of nonlinear analysis is currently experiencing a marked increase in successful research activity. The EU-TMR network "Hyperbolic Systems of Conservation Laws held a summer program offering short courses on the Analysis of Systems of Conservation Laws. This book contains five of the self-contained short courses presented during this program by experts of international reputation. These courses, which address solutions to hyperbolic systems by the front tracking method, non-strictly hyperbolic conservation laws, hyperbolic-elliptic coupled systems, hyperbolic relaxation problems, the stability of nonlinear waves in viscous media and numerics, and more, represent the state of the art of most central aspects of the field.




Annales de L'I.H.P.


Book Description