Economic Market Design and Planning for Electric Power Systems


Book Description

Discover cutting-edge developments in electric power systems Stemming from cutting-edge research and education activities in the field of electric power systems, this book brings together the knowledge of a panel of experts in economics, the social sciences, and electric power systems. In ten concise and comprehensible chapters, the book provides unprecedented coverage of the operation, control, planning, and design of electric power systems. It also discusses: A framework for interdisciplinary research and education Modeling electricity markets Alternative economic criteria and proactive planning for transmission investment in deregulated power systems Payment cost minimization with demand bids and partial capacity cost compensations for day-ahead electricity auctions Dynamic oligopolistic competition in an electric power network and impacts of infrastructure disruptions Reliability in monopolies and duopolies Building an efficient, reliable, and sustainable power system Risk-based power system planning integrating social and economic direct and indirect costs Models for transmission expansion planning based on reconfiguration capacitor switching Next-generation optimization for electric power systems Most chapters end with a bibliography, closing remarks, conclusions, or future work. Economic Market Design and Planning for Electric Power Systems is an indispensable reference for policy-makers, executives and engineers of electric utilities, university faculty members, and graduate students and researchers in control theory, electric power systems, economics, and the social sciences.







Power Systems Control and Reliability


Book Description

Focusing on power systems reliability and generating unit commitments, which are essential in the design and evaluation of the electric power systems for planning, control, and operation, this informative volume covers the concepts of basic reliability engineering, such as power system spinning reserve, types of load curves and their objectives and benefits, the electric power exchange, and the system operation constraints. The author explains how the probability theory plays an important role in reliability applications and discusses the probability applications in electric power systems that led to the development of the mathematical models that are illustrated in the book. The algorithms that are presented throughout the chapters will help researchers and engineers to implement their own suitable programs where needed and will also be valuable for students. The Artificial Neural Networks (ANN) and Fuzzy Logic (FL) systems are discussed and a number of load estimation models are built for some cases, where their formulas are developed. A number of developed models are presented, including the Kronecker techniques, Fourth-Order Runge-Kutta, System Multiplication Method, or Adams Method; and components with different connections and different distributions are presented. A number of examples are explained showing how to build and evaluate power plants.







Power System Planning


Book Description




Fundamentals of Power System Economics


Book Description

A new edition of the classic text explaining the fundamentals of competitive electricity markets—now updated to reflect the evolution of these markets and the large scale deployment of generation from renewable energy sources The introduction of competition in the generation and retail of electricity has changed the ways in which power systems function. The design and operation of successful competitive electricity markets requires a sound understanding of both power systems engineering and underlying economic principles of a competitive market. This extensively revised and updated edition of the classic text on power system economics explains the basic economic principles underpinning the design, operation, and planning of modern power systems in a competitive environment. It also discusses the economics of renewable energy sources in electricity markets, the provision of incentives, and the cost of integrating renewables in the grid. Fundamentals of Power System Economics, Second Edition looks at the fundamental concepts of microeconomics, organization, and operation of electricity markets, market participants’ strategies, operational reliability and ancillary services, network congestion and related LMP and transmission rights, transmission investment, and generation investment. It also expands the chapter on generation investments—discussing capacity mechanisms in more detail and the need for capacity markets aimed at ensuring that enough generation capacity is available when renewable energy sources are not producing due to lack of wind or sun. Retains the highly praised first edition’s focus and philosophy on the principles of competitive electricity markets and application of basic economics to power system operating and planning Includes an expanded chapter on power system operation that addresses the challenges stemming from the integration of renewable energy sources Addresses the need for additional flexibility and its provision by conventional generation, demand response, and energy storage Discusses the effects of the increased uncertainty on system operation Broadens its coverage of transmission investment and generation investment Updates end-of-chapter problems and accompanying solutions manual Fundamentals of Power System Economics, Second Edition is essential reading for graduate and undergraduate students, professors, practicing engineers, as well as all others who want to understand how economics and power system engineering interact.




Electric Utility Resource Planning


Book Description

Most people—including many legislators, regulators, and other decision makers in the electric utility industry—have misconceptions about how electric utilities really "work" and plan for the future. This lack of understanding can lead to poorly informed decisions and policies that directly affect the choices utilities must make. Using easy-to-understand text and examples, Electric Utility Resource Planning: Economics, Reliability, and Decision-Making clarifies how utilities operate their systems and prepare for the future. This explanation will show readers that both expected and counterintuitive results can occur (i.e., conservation might result in higher air emissions, or lowering costs could lead to higher electric rates). Taking readers step by step through this process, the book (in the following order): "Creates" a hypothetical utility Explains how and why a utility operates its system of generating units Discusses the planning methods that a utility would (or should) use Guides readers through each stage of a planning analysis for the hypothetical utility, examining various resource options (conservation, new power plants, and solar) In addition, the author introduces four Fundamental Principles of Resource Planning that should guide utilities. He also offers opinions on how certain trends in utility regulation and legislation can hinder utility planners’ efforts to identify and select the best resources for the utility’s customers. With this book, author Dr. Steven Sim applies his experience and insights from more than two decades of resource planning for Florida Power and Light (FPL). As one of the largest utilities in the United States, FPL has faced a multitude of resource planning challenges, and Dr. Sim has performed and supervised thousands of analyses designed to meet these obstacles. He has also served as an FPL witness in regulatory hearings on a wide variety of topics, ranging from the economic implications of nuclear, conservation, coal, gas, and other resource options, to the non-economic impacts (air emissions, fuel usage, system reliability, etc.) they present.







Power Distribution System Reliability


Book Description

A practical, hands-on approach to power distribution system reliability As power distribution systems age, the frequency and duration of consumer interruptions will increase significantly. Now more than ever, it is crucial for students and professionals in the electrical power industries to have a solid understanding of designing the reliable and cost-effective utility, industrial, and commercial power distribution systems needed to maintain life activities (e.g., computers, lighting, heating, cooling, etc.). This books fills the void in the literature by providing readers with everything they need to know to make the best design decisions for new and existing power distribution systems, as well as to make quantitative "cost vs. reliability" trade-off studies. Topical coverage includes: Engineering economics Reliability analysis of complex network configurations Designing reliability into industrial and commercial power systems Application of zone branch reliability methodology Equipment outage statistics Deterministic planning criteria Customer interruption for cost models for load-point reliability assessment Isolation and restoration procedures And much more Each chapter begins with an introduction and ends with a conclusion and a list of references for further reading. Additionally, the book contains actual utility and industrial power system design problems worked out with real examples, as well as additional problem sets and their solutions. Power Distribution System Reliability is essential reading for practicing engineers, researchers, technicians, and advanced undergraduate and graduate students in electrical power industries.




Power Distribution Planning Reference Book, Second Edition


Book Description

Providing more than twice the content of the original edition, this new edition is the premier source on the selection, development, and provision of safe, high-quality, and cost-effective electric utility distribution systems, and it promises vast improvements in system reliability and layout by spanning every aspect of system planning including load forecasting, scheduling, performance, and economics. Responding to the evolving needs of electric utilities, Power Distribution Planning Reference Book presents an abundance of real-world examples, procedural and managerial issues, and engineering and analytical methodologies that are crucial to efficient and enhanced system performance.