Investigating the Impact of Group Environment on Galaxy Properties


Book Description

The properties of galaxies, such as their shape and star formation rate (SFR), correclate strongly with the galaxy number density in the surrounding Universe. This is well known for cluster galaxies, which show a suppression of the star formation activity with respect to the field, but the situation is less clear for groups. The aim of this research is to explore whether and how the group environment may affectthe star formation properties of infalling star-forming galaxies. We use the Galaxy And Mass Assembly (GAMA) group catalogue, finding that the specific SFR of star-forming members declines at ~ 3.5 R200 towards the group centre by a factor ~ 1.3 with respect to field galaxies. We explore the use of the projected phase space (PPS) diagram, i.e. the galaxy velocity as a function of projected group-centric radius, as an environment metric in the group mass regime. The PPS has been extensively used for investigating more massive clusters where the position of a galaxy in the PPS correlates with time since infall. Similar to cluster studies, we find that the fraction of star-forming group galaxies is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialised regions.




Star-Formation Rates of Galaxies


Book Description

Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.







Secular Evolution of Galaxies


Book Description

The formation and evolution of galaxies is one of the most important topics in modern astrophysics. Secular evolution refers to the relatively slow dynamical evolution due to internal processes induced by a galaxy's spiral arms, bars, galactic winds, black holes and dark matter haloes. It plays an important role in the evolution of spiral galaxies with major consequences for galactic bulges, the transfer of angular momentum, and the distribution of a galaxy's constituent stars, gas and dust. This internal evolution is in turn the key to understanding and testing cosmological models of galaxy formation and evolution. Based on the twenty-third Winter School of the Canary Islands Institute of Astrophysics, this volume presents reviews from nine world-renowned experts on the observational and theoretical research into secular processes, and what these processes can tell us about the structure and formation of galaxies. The volume provides a firm grounding for graduate students and early career researchers working on galactic dynamics and galaxy evolution.




Fundamentals of Galaxy Dynamics, Formation and Evolution


Book Description

Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.




Evolution in the Physical Conditions of Star-Forming Regions Throughout Cosmic History


Book Description

The gas-phase metallicity of the interstellar medium is a powerful probe of the cycle of baryons into and out of galaxies. Constraining the scaling of metallicity with global galaxy properties such as stellar mass (M_*) and star-formation rate (SFR) at multiple epochs provides insight into galaxy growth across cosmic history and the origin of the present-day galaxy population. In this dissertation, I investigate the evolution of the physical conditions of ionized gas in star-forming regions, including metallicity, over the past 12 billion years of cosmic history. This work is contained in five studies that collectively improve our knowledge of galaxy metallicities over the redshift range z=0-3. I present measurements of the mass-metallicity relation at z~2.3 using a novel high-redshift data set from the MOSFIRE Deep Evolution Field (MOSDEF) survey. I further show that there is a relation among M_*, SFR, and metallicity for z~2.3 star-forming galaxies, unambiguously demonstrating the existence of this relation at z>1 for the first time. Knowledge of the physical conditions of line-emitting gas, including the electron density and ionization state, is required for robust estimates of metallicity from strong optical emission lines. I show that the electron density of star-forming regions increases by an order of magnitude from z~0 to z~2.3, and place constraints on the evolution of ionization state. Obtaining unbiased galaxy metallicity estimates additionally requires proper treatment of the various line-emitting sources falling within spectroscopic apertures. I characterize systematic metallicity biases from z~0 global galaxy spectra using a model framework that treats galaxies as ensembles of HII and diffuse ionized gas regions of varying metallicities. The resulting corrections increase the accuracy of the z~0 baseline for evolutionary studies. Finally, I present the first temperature-based metallicity determination at z>2 from a detection of the auroral emission line [OIII]4363. Measurements of auroral lines provide an independent estimate of metallicity that can be used to construct metallicity calibrations appropriate at high redshifts. Observational facilities coming online in the near-future will enable temperature-based metallicity measurements for large samples of high-redshift galaxies, providing unprecedented accuracy in metallicity measurements and a more complete understanding of gas flows and galaxy growth.




Molecular Gas, Dust, and Star Formation in Galaxies (IAU S292)


Book Description

Our knowledge of the molecular gas content in galaxies has advanced rapidly in the past decade with systematic surveys from ground-based radio facilities, coupled with advances in observations and modeling of the thermal dust emission associated with the gas. This Symposium Proceedings provides a timely overview of the latest observations of molecular gas and dust in the Milky Way and in other galaxies. It also covers related topics including the initial conditions for star formation, observational tracers of star formation and interstellar conditions, and simulations of the turbulent, multiphase interstellar medium. Featuring ten review articles by leaders in the field, and including early results and prospects for the ALMA observatory, this volume will prove especially useful for graduate students or scientists who are pursuing or planning research in this area.




The Properties and Evolution of Star Forming Regions Over Cosmic Time


Book Description

Star formation is key to the regulation of galactic environments. Studying the sites of ongoing star formation is therefore critical to understanding the evolution of galaxies over cosmic time. Integral Field Spectrographs (IFS) have allowed astronomers to probe the dynamical processes of galaxies at high redshift, z∼1-3, revealing unique kiloparsec-scale "clumps" of star formation. The relationships between clump size, luminosity, and velocity dispersion are particularly important to understanding clump formation and evolution. These relationships have been measured in a variety of studies but disagreement remains about their nature and possible evolution with redshift. To investigate the cause of these differences, I collected a comprehensive sample of clump observations across redshifts and developed a Bayesian Markov Chain Monte Carlo fitting routine to robustly explore the scaling relationships of star-forming regions. There is evidence of a break into two clump populations based on their star formation rate surface density with differences in slope due to either the formation mode or geometry of the clump and host galaxy disk, but there is added uncertainty from limited observations at small clump sizes. To address this limitation, I observed a sample of compact H II regions in the local starburst galaxy, IC 10, with the Keck Cosmic Web Imager IFS at the W. M. Keck Observatory. I found these H II regions are offset to higher luminosity and velocity dispersion for a given size. These H II regions do not appear to be virialized, and instead show evidence that they are young and expanding. Even in the most compact H II regions, warm gas pressure from photoinization heating provides the dominant contribution to outward pressure and expansion. Improvements in instrumentation are also key to improving studies of the characteristics and evolution of star-forming regions, as well as many other astronomical objects. Liger, an adaptive optics fed IFS and imager for Keck Observatory, will provide improvements in resolution, field of view, and wavelength coverage compared to current instruments. I have developed the mechanical design of three major components of the Liger imager and sequential spectrograph: the filter wheel; selectable cold pupil stop; and mounting stage for the imager detector and IFS pick-off mirrors.




The Formation of Stars


Book Description

This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text for physics and astronomy graduate students, and as a reference for professional scientists.