The Effects of Random and Discrete Sampling when Estimating Continuous-time Diffusions


Book Description

High-frequency financial data are not only discretely sampled in time but the time separating successive observations is often random. We analyze the consequences of this dual feature of the data when estimating a continuous-time model. In particular, we measure the additional effects of the randomness of the sampling intervals over and beyond those due to the discreteness of the data. We also examine the effect of simply ignoring the sampling randomness. We find that in many situations the randomness of the sampling has a larger impact than the discreteness of the data.




Statistical Methods for Stochastic Differential Equations


Book Description

The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.




Handbook of Financial Econometrics


Book Description

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity Contributors include Nobel Laureate Robert Engle and leading econometricians Offers a clarity of method and explanation unavailable in other financial econometrics collections




Contemporary Quantitative Finance


Book Description

This volume contains a collection of papers dedicated to Professor Eckhard Platen to celebrate his 60th birthday, which occurred in 2009. The contributions have been written by a number of his colleagues and co-authors. All papers have been - viewed and presented as keynote talks at the international conference “Quantitative Methods in Finance” (QMF) in Sydney in December 2009. The QMF Conference Series was initiated by Eckhard Platen in 1993 when he was at the Australian - tional University (ANU) in Canberra. Since joining UTS in 1997 the conference came to be organised on a much larger scale and has grown to become a signi?cant international event in quantitative ?nance. Professor Platen has held the Chair of Quantitative Finance at the University of Technology, Sydney (UTS) jointly in the Faculties of Business and Science since 1997. Prior to this appointment, he was the Founding Head of the Centre for Fin- cial Mathematics at the Institute of Advanced Studies at ANU, a position to which he was appointed in 1994. Eckhard completed a PhD in Mathematics at the Technical University in Dresden in 1975 and in 1985 obtained his Doctor of Science degree (Habilitation degree in the German system) from the Academy of Sciences in Berlin where he headed the Stochastics group at the Weierstrass Institute.




Stochastic Analysis and Applications to Finance


Book Description

A collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. It covers the topics ranging from Markov processes, backward stochastic differential equations, stochastic partial differential equations, and stochastic control, to risk measure and risk theory.




Recent Advances in Applied Probability


Book Description

Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability.




Stochastic Finance


Book Description

Since the pioneering work of Black, Scholes, and Merton in the field of financial mathematics, research has led to the rapid development of a substantial body of knowledge, with plenty of applications to the common functioning of the world’s financial institutions. Mathematics, as the language of science, has always played a role in the development of knowledge and technology. Presently, the high-tech character of modern business has increased the need for advanced methods, which rely to a large extent on mathematical techniques. It has become essential for the financial analyst to possess a high degree of proficiency in these mathematical techniques.




Handbook of Financial Time Series


Book Description

The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.




Modelling Irregularly Spaced Financial Data


Book Description

This book provides a methodological framework to model univariate and multivariate irregularly spaced financial data. It gives a thorough review of recent developments in the econometric literature, puts forward existing approaches and opens up new directions. The book presents alternative ways to model so-called financial point processes using dynamic duration as well as intensity models and discusses their ability to account for specific features of point process data, like the occurrence of time-varying covariates, censoring mechanisms and multivariate structures. Moreover, it illustrates the use of various types of financial point processes to model financial market activity from different viewpoints and to construct volatility and liquidity measures under explicit consideration of the passing trading time.




Handbook of Volatility Models and Their Applications


Book Description

A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.