The Regenerator and the Stirling Engine


Book Description

The Regenerator and the Stirling Engine examines the basic scientific and engineering principles of the Regenerator and the Stirling engine. Drawing upon his own research and collaboration with engine developers, Allan J Organ offers solutions to many of the problems which have prevented these engines operating at the levels of efficiency of which they are theoretically capable. The Regenerator and the Stirling Engine offers practising engineers and designers specific guidelines for building in optimum thermodynamic performance at the design stage. COMPLETE CONTENTS: Bridging the gap The Stirling cycle Heat transfer – and the price Similarity and scaling; Energetic similarity In support of similarity Hausen revised Connectivity and thermal shorting Real particle trajectories – natural co-ordinates The Stirling regenerator The Ritz rotary regenerator Compressibility effects Regenerator flow impedance Complex admittance – experimental corroboration Steady-flow Cf–Nre correlations inferred from linear-wave analysis Optimization Part I: without the computer Optimization Part II: cyclic steady state Elements of combustion Design study Hobbyhorse Origins Appendices




Stirling Convertor Regenerators


Book Description

Stirling Convertor Regenerators addresses the latest developments and future possibilities in the science and practical application of Stirling engine regenerators and technology. Written by experts in the vanguard of alternative energy, this invaluable resource presents integral scientific details and design concepts associated with Stirling conve




Free Piston Stirling Engines


Book Description

DEFINITION AND NOMENCLATURE A Stirling engine is a mechanical device which operates on a closed regenerative thermodynamic cycle with cyclic compression and expansion of the working fluid at different temperature levels. The flow of working fluid is controlled only by the internal volume changes, there are no valves and, overall, there is a net conversion of heat to work or vice-versa. This generalized definition embraces a large family of machines with different functions; characteristics and configurations. It includes both rotary and reciprocating systems utilizing mechanisms of varying complexity. It covers machines capable of operating as a prime mover or power system converting heat supplied at high tempera ture to output work and waste heat at a lower temperature. It also covers work-consuming machines used as refrigerating systems and heat pumps abstracting heat from a low temperature source and delivering this plus the heat equivalent of the work consumed to a higher tem perature. Finally it covers work-consuming devices used as pressure generators compressing a fluid from a low pressure to a higher pres sure. Very similar machines exist which operate on an open regen erative cycle where the flow of working fluid is controlled by valves. For convenience these may be called Ericsson engines but unfortunate ly the distinction is not widely established and regenerative machines of both types are frequently called 'Stirling engines'.




Stirling Engine Design Manual


Book Description

For Stirling engines to enjoy widespread application and acceptance, not only must the fundamental operation of such engines be widely understood, but the requisite analytic tools for the stimulation, design, evaluation and optimization of Stirling engine hardware must be readily available. The purpose of this design manual is to provide an introduction to Stirling cycle heat engines, to organize and identify the available Stirling engine literature, and to identify, organize, evaluate and, in so far as possible, compare non-proprietary Stirling engine design methodologies. This report was originally prepared for the National Aeronautics and Space Administration and the U. S. Department of Energy.




Stirling Cycle Engines


Book Description

Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concept. Stirling Cycle Engines re-visits the design challenge, doing so in three stages. Firstly, unrealistic expectations are dispelled: chasing the Carnot efficiency is a guarantee of disappointment, since the Stirling engine has no such pretentions. Secondly, no matter how complex the gas processes, they embody a degree of intrinsic similarity from engine to engine. Suitably exploited, this means that a single computation serves for an infinite number of design conditions. Thirdly, guidelines resulting from the new approach are condensed to high-resolution design charts – nomograms. Appropriately designed, the Stirling engine promises high thermal efficiency, quiet operation and the ability to operate from a wide range of heat sources. Stirling Cycle Engines offers tools for expediting feasibility studies and for easing the task of designing for a novel application. Key features: Expectations are re-set to realistic goals. The formulation throughout highlights what the thermodynamic processes of different engines have in common rather than what distinguishes them. Design by scaling is extended, corroborated, reduced to the use of charts and fully Illustrated. Results of extensive computer modelling are condensed down to high-resolution Nomograms. Worked examples feature throughout. Prime movers (and coolers) operating on the Stirling cycle are of increasing interest to industry, the military (stealth submarines) and space agencies. Stirling Cycle Engines fills a gap in the technical literature and is a comprehensive manual for researchers and practitioners. In particular, it will support effort world-wide to exploit potential for such applications as small-scale CHP (combined heat and power), solar energy conversion and utilization of low-grade heat.




Thermoacoustics


Book Description

This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries. The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Leadership, Innovation and Entrepreneurship as Driving Forces of the Global Economy


Book Description

This volume aims to outline the fundamental principles behind leadership, innovation and entrepreneurship and show how the interrelations between them promote business and trade practices in the global economy. Derived from the 2016 International Conference on Leadership, Innovation, and Entrepreneurship (ICLIE), this volume showcases original papers presenting current research, discoveries and innovations across disciplines such as business, social sciences, engineering, health sciences and medicine. The pace of globalization is increasing at a rapid rate and is primarily driven by increasing volume of trade, accelerating pace of competition among nations, freer flows of capital and increased level of cooperation among trading partners. Leadership, innovation, and entrepreneurship are key driving forces in enhancing this phenomenon and are among the major catalysts for contemporary businesses trading in the global economy. This conference and the enclosed papers provides a platform in which to disseminate and exchange ideas to promote a better understanding of current issues and solutions to challenges in the globalized economy in relation to the fields of entrepreneurship, business and economics, technology management, and Islamic finance and management. Thus, the theories, research, innovations, methods and practices presented in this book will be of use to researchers, practitioners, student and policy makers across the globe.