Origin Of Symmetries


Book Description

The development in our understanding of symmetry principles is reviewed. Many symmetries, such as charge conjugation, parity and strangeness, are no longer considered as fundamental but as natural consequences of a gauge field theory of strong and electromagnetic interactions. Other symmetries arise naturally from physical models in some limiting situation, such as for low energy or low mass. Random dynamics and attempts to explain all symmetries — even Lorentz invariance and gauge invariance — without appealing to any fundamental invariance of the laws of nature are discussed. A selection of original papers is reprinted.




Quantum Non-linear Sigma-Models


Book Description

This is the first comprehensive presentation of the quantum non-linear sigma-models. The original papers consider in detail geometrical properties and renormalization of a generic non-linear sigma-model, illustrated by explicit multi-loop calculations in perturbation theory.




Supermathematics and its Applications in Statistical Physics


Book Description

This text presents the mathematical concepts of Grassmann variables and the method of supersymmetry to a broad audience of physicists interested in applying these tools to disordered and critical systems, as well as related topics in statistical physics. Based on many courses and seminars held by the author, one of the pioneers in this field, the reader is given a systematic and tutorial introduction to the subject matter. The algebra and analysis of Grassmann variables is presented in part I. The mathematics of these variables is applied to a random matrix model, path integrals for fermions, dimer models and the Ising model in two dimensions. Supermathematics - the use of commuting and anticommuting variables on an equal footing - is the subject of part II. The properties of supervectors and supermatrices, which contain both commuting and Grassmann components, are treated in great detail, including the derivation of integral theorems. In part III, supersymmetric physical models are considered. While supersymmetry was first introduced in elementary particle physics as exact symmetry between bosons and fermions, the formal introduction of anticommuting spacetime components, can be extended to problems of statistical physics, and, since it connects states with equal energies, has also found its way into quantum mechanics. Several models are considered in the applications, after which the representation of the random matrix model by the nonlinear sigma-model, the determination of the density of states and the level correlation are derived. Eventually, the mobility edge behavior is discussed and a short account of the ten symmetry classes of disorder, two-dimensional disordered models, and superbosonization is given.




The Physics of Neutrino Interactions


Book Description

A comprehensive introduction to neutrino physics with detailed description of neutrinos and their properties.




Mirror Symmetry


Book Description

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.




Physics And Mathematics Of Anyons - Proceedings Of The Tcsuh Workshop


Book Description

In this volume, the fractional quantum Hall effect is reviewed and reexamined with emphasis on the fractional statistics. Possible relevance of the anyon idea to high temperature superconductivity is addressed both theoretically and experimentally.







Lattice 89


Book Description

Lattice 89