The Evolution of Multicellularity


Book Description

Among the most important innovations in the history of life is the transition from single-celled organisms to more complex, multicellular organisms. Multicellularity has evolved repeatedly across the tree of life, resulting in the evolution of new kinds of organisms that collectively constitute a significant portion of Earth’s biodiversity and have transformed the biosphere. This volume examines the origins and subsequent evolution of multicellularity, reviewing the types of multicellular groups that exist, their evolutionary relationships, the processes that led to their evolution, and the conceptual frameworks in which their evolution is understood. This important volume is intended to serve as a jumping-off point, stimulating further research by summarizing the topics that students and researchers of the evolution of multicellularity should be familiar with, and highlighting future research directions for the field.




The Evolution of Multicellularity


Book Description

Among the most important innovations in the history of life is the transition from single-celled organisms to more complex, multicellular organisms. Multicellularity has evolved repeatedly across the tree of life, resulting in the evolution of new kinds of organisms that collectively constitute a significant portion of Earth’s biodiversity and have transformed the biosphere. This volume examines the origins and subsequent evolution of multicellularity, reviewing the types of multicellular groups that exist, their evolutionary relationships, the processes that led to their evolution, and the conceptual frameworks in which their evolution is understood. This important volume is intended to serve as a jumping-off point, stimulating further research by summarizing the topics that students and researchers of the evolution of multicellularity should be familiar with, and highlighting future research directions for the field. Chapter 13 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.




The Evolution of Multicellularity


Book Description

This book examines the origins and subsequent evolution of multicellularity. The transition from unicellular to multicellular life was one of a few major events in the history of life that created new opportunities for more complex biological systems to evolve.




The Search for Life's Origins


Book Description

The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers.




The Major Transitions in Evolution


Book Description

During evolution there have been several major changes in the way genetic information is organized and transmitted from one generation to the next. These transitions include the origin of life itself, the first eukaryotic cells, reproduction by sexual means, the appearance of multicellular plants and animals, the emergence of cooperation and of animal societies. This is the first book to discuss all these major transitions and their implications for our understanding of evolution.Clearly written and illustrated with many original diagrams, this book will be welcomed by students and researchers in the fields of evolutionary biology, ecology, and genetics.




Evolutionary Transitions to Multicellular Life


Book Description

The book integrates our understanding of the factors and processes underlying the evolution of multicellularity by providing several complementary perspectives (both theoretical and experimental) and using examples from various lineages in which multicellularity evolved. Recent years marked an increased interest in understanding how and why these transitions occurred, and data from various fields are providing new insights into the forces driving the several independent transitions to multicellular life as well as into the genetic and molecular basis for the evolution of this phenotype. The ultimate goal of this book is to facilitate the identification of general and unifying principles and mechanisms.




First Signals


Book Description

The enormous recent success of molecular developmental biology has yielded a vast amount of new information on the details of development. So much so that we risk losing sight of the underlying principles that apply to all development. To cut through this thicket, John Tyler Bonner ponders a moment in evolution when development was at its most basic--the moment when signaling between cells began. Although multicellularity arose numerous times, most of those events happened many millions of years ago. Many of the details of development that we see today, even in simple organisms, accrued over a long evolutionary timeline, and the initial events are obscured. The relatively uncomplicated and easy-to-grow cellular slime molds offer a unique opportunity to analyze development at a primitive stage and perhaps gain insight into how early multicellular development might have started. Through slime molds, Bonner seeks a picture of the first elements of communication between cells. He asks what we have learned by looking at their developmental biology, including recent advances in our molecular understanding of the process. He then asks what is the most elementary way that polarity and pattern formation can be achieved. To find the answer, he uses models, including mathematical ones, to generate insights into how cell-to-cell cooperation might have originated. Students and scholars in the blossoming field of the evolution of development, as well as evolutionary biologists generally, will be interested in what Bonner has to say about the origins of multicellular development--and thus of the astounding biological complexity we now observe--and how best to study it.




The Cheating Cell


Book Description

A fundamental and groundbreaking reassessment of how we view and manage cancer When we think of the forces driving cancer, we don’t necessarily think of evolution. But evolution and cancer are closely linked because the historical processes that created life also created cancer. The Cheating Cell delves into this extraordinary relationship, and shows that by understanding cancer’s evolutionary origins, researchers can come up with more effective, revolutionary treatments. Athena Aktipis goes back billions of years to explore when unicellular forms became multicellular organisms. Within these bodies of cooperating cells, cheating ones arose, overusing resources and replicating out of control, giving rise to cancer. Aktipis illustrates how evolution has paved the way for cancer’s ubiquity, and why it will exist as long as multicellular life does. Even so, she argues, this doesn’t mean we should give up on treating cancer—in fact, evolutionary approaches offer new and promising options for the disease’s prevention and treatments that aim at long-term management rather than simple eradication. Looking across species—from sponges and cacti to dogs and elephants—we are discovering new mechanisms of tumor suppression and the many ways that multicellular life-forms have evolved to keep cancer under control. By accepting that cancer is a part of our biological past, present, and future—and that we cannot win a war against evolution—treatments can become smarter, more strategic, and more humane. Unifying the latest research from biology, ecology, medicine, and social science, The Cheating Cell challenges us to rethink cancer’s fundamental nature and our relationship to it.




The Cosmic Zoo


Book Description

Are humans a galactic oddity, or will complex life with human abilities develop on planets with environments that remain habitable for long enough? In a clear, jargon-free style, two leading researchers in the burgeoning field of astrobiology critically examine the major evolutionary steps that led us from the distant origins of life to the technologically advanced species we are today. Are the key events that took life from simple cells to astronauts unique occurrences that would be unlikely to occur on other planets? By focusing on what life does - it's functional abilities - rather than specific biochemistry or anatomy, the authors provide plausible answers to this question. Systematically exploring the various pathways that led to the complex biosphere we experience on planet Earth, they show that most of the steps along that path are likely to occur on any world hosting life, with only two exceptions: One is the origin of life itself – if this is a highly improbable event, then we live in a rather “empty universe”. However, if this isn’t the case, we inevitably live in a universe containing a myriad of planets hosting complex as well as microbial life - a “cosmic zoo”. The other unknown is the rise of technologically advanced beings, as exemplified on Earth by humans. Only one technological species has emerged in the roughly 4 billion years life has existed on Earth, and we don’t know of any other technological species elsewhere. If technological intelligence is a rare, almost unique feature of Earth's history, then there can be no visitors to the cosmic zoo other than ourselves. Schulze-Makuch and Bains take the reader through the history of life on Earth, laying out a consistent and straightforward framework for understanding why we should think that advanced, complex life exists on planets other than Earth. They provide a unique perspective on the question that puzzled the human species for centuries: are we alone?