The Experimental Side of Modeling


Book Description

An innovative, multifaceted approach to scientific experiments as designed by and shaped through interaction with the modeling process The role of scientific modeling in mediation between theories and phenomena is a critical topic within the philosophy of science, touching on issues from climate modeling to synthetic models in biology, high energy particle physics, and cognitive sciences. Offering a radically new conception of the role of data in the scientific modeling process as well as a new awareness of the problematic aspects of data, this cutting-edge volume offers a multifaceted view on experiments as designed and shaped in interaction with the modeling process. Contributors address such issues as the construction of models in conjunction with scientific experimentation; the status of measurement and the function of experiment in the identification of relevant parameters; how the phenomena under study are reconceived when accounted for by a model; and the interplay between experimenting, modeling, and simulation when results do not mesh. Highlighting the mediating role of models and the model-dependence (as well as theory-dependence) of data measurement, this volume proposes a normative and conceptual innovation in scientific modeling—that the phenomena to be investigated and modeled must not be precisely identified at the start but specified during the course of the interactions arising between experimental and modeling activities. Contributors: Nancy D. Cartwright, U of California, San Diego; Anthony Chemero, U of Cincinnati; Ronald N. Giere, U of Minnesota; Jenann Ismael, U of Arizona; Tarja Knuuttila, U of South Carolina; Andrea Loettgers, U of Bern, Switzerland; Deborah Mayo, Virginia Tech; Joseph Rouse, Wesleyan U; Paul Teller, U of California, Davis; Michael Weisberg, U of Pennsylvania; Eric Winsberg, U of South Florida.




Predictive Modeling of Dynamic Processes


Book Description

Predictive Modeling of Dynamic Processes provides an overview of hydrocode technology, applicable to a variety of industries and areas of engineering design. Covering automotive crash, blast impact, and hypervelocity impact phenomena, this volume offers readers an in-depth explanation of the fundamental code components. Chapters include informative introductions to each topic, and explain the specific requirements pertaining to each predictive hydrocode. Successfully blending crash simulation, hydrocode technology and impact engineering, this volume fills a gap in the current competing literature available.







Animal Models in Orthopaedic Research


Book Description

Animal Models in Orthopaedic Research is a reference book of the major animal models used in the study of orthopaedic conditions and in the in vivo study of biomaterials. Use of animal models provides important knowledge about pathological conditions that can eventually lead to the development of more effective clinical treatment of diseases in bot




Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications


Book Description

Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications comprises 411 papers that were presented at SEMC 2019, the Seventh International Conference on Structural Engineering, Mechanics and Computation, held in Cape Town, South Africa, from 2 to 4 September 2019. The subject matter reflects the broad scope of SEMC conferences, and covers a wide variety of engineering materials (both traditional and innovative) and many types of structures. The many topics featured in these Proceedings can be classified into six broad categories that deal with: (i) the mechanics of materials and fluids (elasticity, plasticity, flow through porous media, fluid dynamics, fracture, fatigue, damage, delamination, corrosion, bond, creep, shrinkage, etc); (ii) the mechanics of structures and systems (structural dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) the numerical modelling and experimental testing of materials and structures (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) innovations and special structures (nanostructures, adaptive structures, smart structures, composite structures, bio-inspired structures, shell structures, membranes, space structures, lightweight structures, long-span structures, tall buildings, wind turbines, etc); (v) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber, glass); (vi) the process of structural engineering (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, testing, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). The SEMC 2019 Proceedings will be of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find them useful. Two versions of the papers are available. Short versions, intended to be concise but self-contained summaries of the full papers, are in this printed book. The full versions of the papers are in the e-book.







Auditory Computation


Book Description

The auditory system presents many features of a complex computational environment, as well as providing numerous opportunities for computational analysis. This volume represents an overview of computational approaches to understanding auditory system function. The chapters share the common perspective that complex information processing must be understood at multiple levels; that disciplines such as neurobiology, psychophysics, and computer science make vital contributions; and that the end product of computational analysis should be the development of formal models.




Constitutive Models for Rubber VIII


Book Description

Due to their unique properties, rubber materials are found in multiple engineering applications such as tires, engine mounts, shock absorbers, flexible joints, seals, etc. Nevertheless, the complex nature of the behavior of such material makes it difficult to accurately model and predict the performance of these units.The challenge to correctly rep




Building Experiments


Book Description

Ranging from abstract theory to practical design solutions, this book provides the reader with the understandings needed to design and run cutting edge experiments.




Dynamics With Friction: Modeling, Analysis And Experiment (Part I)


Book Description

The dynamics of dissipative mechanical and structural systems is being investigated at various institutions and laboratories worldwide with ever-increasing sophistication of modeling, analysis and experiments. This book offers a collection of contributions from these research centers that represent the state-of-the-art in the study of friction oscillators. It provides the reader with the fruits of a team effort by leaders in this fascinating field.The topics covered include friction modeling, self-excited friction oscillators, homogeneous frictional systems, unsteady lubricated friction, instantaneous contact geometry, impact damping, friction-induced instability and nonlinear dynamics of stick-slip systems, among other topics.This book gives a comprehensive picture of dynamics of dissipative mechanical and structural systems. It also gives an up-to-date account of the present state of the field. It will be of interest to engineers, rheologists, material scientists, applied mathematicians, physicists and historians of science and technology.