Annual Commencement


Book Description




Heteronuclear Metal-Metal Bonds


Book Description

The number of organometallic compounds containing heteronuclear metal-metal bonds has grown tremendously in the last ten years. Also known as cluster compounds, these compounds have been found to exhibit a rich diversity of molecular structures and reactivities. Descriptions of the structures and transformations of the complexes are central features. Separate chapters have been prepared for compounds containing bonds between transition metals and the metals of the copper and zinc subgroups. Unlike COMC, this volume contains an entire chapter devoted to studies of heteronuclear metal compounds in catalysis.







Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials


Book Description

Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.







Chemical Science of π-Electron Systems


Book Description

This book presents the most advanced review available of all aspects of π-electron systems, including novel structures, new synthetic protocols, chemical and physical properties, spectroscopic and computational insights, molecular engineering, device properties and physiological properties. π-Electron systems are ubiquitous in nature. Plants convert light energy into chemical energy by photosynthetic processes, in which chlorophylls and other porphyrinoids play an important role. On the one hand, research to learn about photosynthesis from nature has led to understanding of electron and energy transfer processes and to achieving artificial energy conversion systems inspired by nature. On the other hand, recent advances in organic and inorganic chemistry make it possible to construct novel π-electron systems that had never existed in nature. The authors of this book are from a variety of research fields including organic chemistry, inorganic chemistry, physical chemistry, materials science, and biology, providing a comprehensive overview of π-electron systems for a broad readership. Not only specialists but also graduate students working in π-electron systems will find the book of great interest. Throughout, the diverse potential for future fruitful applications of π-electron systems is revealed to the reader.




Nanostructured Materials Preparation via Condensation Ways


Book Description

The book is devoted to novel nanostructured materials and nanotechnology. A comprehensive analysis of the condensing methods of preparation of novel nanostructured materials is given. The methodology of power-consuming preparation of nanostructured materials is discussed, including thermolysis, photo- and radiolytic, electrochemical and mechanochemical methods. The peculiarities of chemical transformations in organic and inorganic matrices are compared. Special attention is given to kinetics and mechanism of the formation of nanocomposites. The structure and properties of such nanostructured materials are analysed.




Molecular Metal-Metal Bonds


Book Description

Systematically covering all the latest developments in the field, this is a comprehensive and handy introduction to metal-metal bonding. The chapters follow a uniform, coherent structure for a clear overview, allowing readers easy access to the information. The text covers such topics as synthesis, properties, structures, notable features, reactivity and examples of applications of the most important compounds in each group with metal-metal bonding throughout the periodic table. With its general remarks at the beginning of each chapter, this is a must-have reference for all molecular inorganic chemists, including PhD students and postdocs, as well as more experienced researchers.