The Foundations of Signal Integrity


Book Description

The first book to focus on the electromagnetic basis of signal integrity The Foundations of Signal Integrity is the first of its kind—a reference that examines the physical foundation of system integrity based on electromagnetic theory derived from Maxwell's Equations. Drawing upon the cutting-edge research of Professor Paul Huray's team of industrial engineers and graduate students, it develops the physical theory of wave propagation using methods of solid state and high-energy physics, mathematics, chemistry, and electrical engineering before addressing its application to modern high-speed systems. Coverage includes: All the necessary electromagnetic theory needed for a complete understanding of signal integrity Techniques for obtaining analytic solutions to Maxwell's Equations for ideal materials and boundary conditions Plane electromagnetic waves Plane waves in compound media Transmission lines and waveguides Ideal models vs. real-world systems Complex permittivity of propagating media Surface roughness Advanced signal integrity Signal integrity simulations Problem sets for each chapter With its thorough coverage of this relatively new discipline, the book serves as an ideal textbook for senior undergraduate and junior graduate students, as well as a resource for practicing engineers in this burgeoning field. At the end of each section, it typically stimulates the reader with open-ended questions that might lead to future theses or dissertation research.







S-Parameters for Signal Integrity


Book Description

Master the usage of s-parameters in signal integrity applications and gain full understanding of your simulation and measurement environment with this rigorous and practical guide. Solve specific signal integrity problems including calculation of the s-parameters of a network, linear simulation of circuits, de-embedding, and virtual probing, all with expert guidance. Learn about the interconnectedness of s-parameters, frequency responses, filters, and waveforms. This invaluable resource for signal integrity engineers is supplemented with the open-source software SignalIntegrity, a Python package for scripting solutions to signal integrity problems.




Advanced Signal Integrity for High-Speed Digital Designs


Book Description

A synergistic approach to signal integrity for high-speed digital design This book is designed to provide contemporary readers with an understanding of the emerging high-speed signal integrity issues that are creating roadblocks in digital design. Written by the foremost experts on the subject, it leverages concepts and techniques from non-related fields such as applied physics and microwave engineering and applies them to high-speed digital design—creating the optimal combination between theory and practical applications. Following an introduction to the importance of signal integrity, chapter coverage includes: Electromagnetic fundamentals for signal integrity Transmission line fundamentals Crosstalk Non-ideal conductor models, including surface roughness and frequency-dependent inductance Frequency-dependent properties of dielectrics Differential signaling Mathematical requirements of physical channels S-parameters for digital engineers Non-ideal return paths and via resonance I/O circuits and models Equalization Modeling and budgeting of timing jitter and noise System analysis using response surface modeling Each chapter includes many figures and numerous examples to help readers relate the concepts to everyday design and concludes with problems for readers to test their understanding of the material. Advanced Signal Integrity for High-Speed Digital Designs is suitable as a textbook for graduate-level courses on signal integrity, for programs taught in industry for professional engineers, and as a reference for the high-speed digital designer.




Bogatin’s Practical Guide to Transmission Line Design and Characterization for Signal Integrity Applications


Book Description

This multimedia eBook establishes a solid foundation in the essential principles of how signals interact with transmission lines, how the physical design of interconnects affects transmission line properties, and how to interpret single-ended and differential time domain reflection (TDR) measurements to extract important figures of merits and avoid common mistakes. This book presents an intuitive understanding of transmission lines. Instructional videos are provided in every chapter that cover important aspects of the interconnect design and characterization process. This video eBook helps establish foundations for designing and characterizing the electrical properties of interconnects to explain in a simplified way how signals propagate and interact with interconnects and how the physical design of transmission structures will impact performance. Never be intimidated by impedance or differential pairs again.




Signal Integrity


Book Description

This thorough review of the fundamental principles associated with signal integrity provides engineering principles behind signal integrity effects, and applies this understanding to solving problems.




Understanding Signal Integrity


Book Description

This unique book provides you with practical guidance on understanding and interpreting signal integrity (SI) performance to help you with your challenging circuit board design projects. You find high-level discussions of important SI concepts presented in a clear and easily accessible format, including question and answer sections and bulleted lists. This valuable resource features rules of thumb and simple equations to help you make estimates of critical signal integrity parameters without using circuit simulators of CAD (computer-aided design). The book is supported with over 120 illustrations, nearly 100 equations, and detailed reference lists at the end of each chapter.




Signal and Power Integrity--simplified


Book Description

With the inclusion of the two new hot topics in signal integrity, power integrity and high speed serial links, this book will be the most up to date complete guide to understanding and designing for signal integrity.




Jitter, Noise, and Signal Integrity at High-Speed


Book Description

State-of-the-art JNB and SI Problem-Solving: Theory, Analysis, Methods, and Applications Jitter, noise, and bit error (JNB) and signal integrity (SI) have become today‘s greatest challenges in high-speed digital design. Now, there’s a comprehensive and up-to-date guide to overcoming these challenges, direct from Dr. Mike Peng Li, cochair of the PCI Express jitter standard committee. One of the field’s most respected experts, Li has brought together the latest theory, analysis, methods, and practical applications, demonstrating how to solve difficult JNB and SI problems in both link components and complete systems. Li introduces the fundamental terminology, definitions, and concepts associated with JNB and SI, as well as their sources and root causes. He guides readers from basic math, statistics, circuit and system models all the way through final applications. Emphasizing clock and serial data communications applications, he covers JNB and SI simulation, modeling, diagnostics, debugging, compliance testing, and much more.




Signal Integrity Characterization Techniques


Book Description

Cogently addressing the future of signal integrity and the effect it will have on the data transmission industry as a whole, this all-inclusive guide addresses a wide array of technologies, from traditional digital data transmission to microwave measurements, and accessibly examines the gap between the two. Focusing on real world applications and providing a wide array of case studies that show how each technology can be used—from backplane design challenges to advanced error correction techniques—this guide addresses many of today’s high-speed technologies while also providing excellent insight into their future direction. With numerous valuable lessons pertaining to the signal integrity industry, this resource is the ultimate must-read guide for any specialist in the design engineering field.