The Functional Consequences of Biodiversity


Book Description

Does biodiversity influence how ecosystems function? Might diversity loss affect the ability of ecosystems to deliver services of benefit to humankind? Ecosystems provide food, fuel, fiber, and drinkable water, regulate local and regional climate, and recycle needed nutrients, among other things. An ecosyste's ability to sustain functioning may depend on the number of species residing in the ecosystem--its biological diversity--but this has been a controversial hypothesis. There are many unanswered questions about how and why changes in biodiversity could alter ecosystem functioning. This volume, written by top researchers, synthesizes empirical studies on the relationship between biodiversity and ecosystem functioning and extends that knowledge using a novel and coordinated set of models and theoretical approaches. These experimental and theoretical analyses demonstrate that functioning usually increases with biodiversity, but also reveals when and under what circumstances other relationships between biodiversity and ecosystem functioning might occur. It also accounts for apparent changes in diversity-functioning relationships that emerge over time in disturbed ecosystems, thereby addressing a major controversy in the field. The volume concludes with a blueprint for moving beyond small-scale studies to regional ones--a move of enormous significance for policy and conservation but one that will entail tackling some of the most fundamental challenges in ecology. In addition to the editors, the contributors are Juan Armesto, Claudia Neuhauser, Andy Hector, Clarence Lehman, Peter Kareiva, Sharon Lawler, Peter Chesson, Teri Balser, Mary K. Firestone, Robert Holt, Michel Loreau, Johannes Knops, David Wedin, Peter Reich, Shahid Naeem, Bernhard Schmid, Jasmin Joshi, and Felix Schläpfer.




The Functional Consequences of Biodiversity


Book Description

Does biodiversity influence how ecosystems function? Might diversity loss affect the ability of ecosystems to deliver services of benefit to humankind? Ecosystems provide food, fuel, fiber, and drinkable water, regulate local and regional climate, and recycle needed nutrients, among other things. An ecosyste's ability to sustain functioning may depend on the number of species residing in the ecosystem--its biological diversity--but this has been a controversial hypothesis. There are many unanswered questions about how and why changes in biodiversity could alter ecosystem functioning. This volume, written by top researchers, synthesizes empirical studies on the relationship between biodiversity and ecosystem functioning and extends that knowledge using a novel and coordinated set of models and theoretical approaches. These experimental and theoretical analyses demonstrate that functioning usually increases with biodiversity, but also reveals when and under what circumstances other relationships between biodiversity and ecosystem functioning might occur. It also accounts for apparent changes in diversity-functioning relationships that emerge over time in disturbed ecosystems, thereby addressing a major controversy in the field. The volume concludes with a blueprint for moving beyond small-scale studies to regional ones--a move of enormous significance for policy and conservation but one that will entail tackling some of the most fundamental challenges in ecology. In addition to the editors, the contributors are Juan Armesto, Claudia Neuhauser, Andy Hector, Clarence Lehman, Peter Kareiva, Sharon Lawler, Peter Chesson, Teri Balser, Mary K. Firestone, Robert Holt, Michel Loreau, Johannes Knops, David Wedin, Peter Reich, Shahid Naeem, Bernhard Schmid, Jasmin Joshi, and Felix Schläpfer.




Biodiversity and Ecosystem Functioning


Book Description

Increasing domination of ecosystems by humans is steadily transforming them into depauperate systems. How will this loss of biodiversity affect the functioning and stability of natural and managed ecosystems? This work provides comprehensive coverage of empirical and theoretical research.




Biological Extinction


Book Description

Questions why species are becoming extinct, and how we can protect the natural world on which we all depend.




Conserving Biodiversity


Book Description

The loss of the earth's biological diversity is widely recognized as a critical environmental problem. That loss is most severe in developing countries, where the conditions of human existence are most difficult. Conserving Biodiversity presents an agenda for research that can provide information to formulate policy and design conservation programs in the Third World. The book includes discussions of research needs in the biological sciences as well as economics and anthropology, areas of critical importance to conservation and sustainable development. Although specifically directed toward development agencies, non-governmental organizations, and decisionmakers in developing nations, this volume should be of interest to all who are involved in the conservation of biological diversity.




The Ecological and Societal Consequences of Biodiversity Loss


Book Description

The idea that changes in biodiversity can impact how ecosystems function has, over the last quarter century, gone from being a controversial notion to an accepted part of science and policy. As the field matures, it is high time to review progress, explore the links between this new research area and fundamental ecological concepts, and look ahead to the implementation of this knowledge. This book is designed to both provide an up-to-date overview of research in the area and to serve as a useful textbook for those studying the relationship between biodiversity and the functioning, stability and services of ecosystems. The Ecological and Societal Consequences of Biodiversity Loss is aimed at a wide audience of upper undergraduate students, postgraduate students, and academic and research staff.




Marine Biodiversity and Ecosystem Functioning


Book Description

The biological composition and richness of most of the Earth's major ecosystems are being dramatically and irreversibly transformed by anthropogenic activity. Yet, despite the vast areal extent of our oceans, the mainstay of research to-date in the biodiversity-ecosystem functioning arena has been weighted towards ecological observations and experimentation in terrestrial plant and soil systems. This book provides a framework for extending these concepts to a variety of marine systems. Marine Biodiversity and Ecosystem Functioning is the first book to address the latest advances in biodiversity-function science using marine examples. It brings together contributions from the leading scientists in the field to provide an in-depth evaluation of the science, before offering a perspective on future research directions for some of the most pressing environmental issues facing society today and in the future.




Biodiversity and Ecosystem Function


Book Description

The biota of the earth is being altered at an unprecedented rate. We are witnessing wholesale exchanges of organisms among geographic areas that were once totally biologically isolated. We are seeing massive changes in landscape use that are creating even more abundant succes sional patches, reductions in population sizes, and in the worst cases, losses of species. There are many reasons for concern about these trends. One is that we unfortunately do not know in detail the conse quences of these massive alterations in terms of how the biosphere as a whole operates or even, for that matter, the functioning of localized ecosystems. We do know that the biosphere interacts strongly with the atmospheric composition, contributing to potential climate change. We also know that changes in vegetative cover greatly influence the hydrology and biochemistry ofa site or region. Our knowledge is weak in important details, however. How are the many services that ecosystems provide to humanity altered by modifications of ecosystem composition? Stated in another way, what is the role of individual species in ecosystem function? We are observing the selective as well as wholesale alteration in the composition of ecosystems. Do these alterations matter in respect to how ecosystems operate and provide services? This book represents the initial probing of this central ques tion. It will be followed by other volumes in this series examining in depth the functional role of biodiversity in various ecosystems of the world.




Insects and Ecosystem Function


Book Description

Insects are a dominant component of biodiversity in terrestrial ecosystems and play a key role in mediating the relationship between plants and ecosystem processes. This volume examines their effects on ecosystem functioning, focusing mainly, but not exclusively, on herbivorous insects. Renowned authors with extensive experience in the field of plant-insect interactions, contribute to the volume using examples from their own work.




Plant Functional Diversity


Book Description

Biological diversity, the variety of living organisms on Earth, is traditionally viewed as the diversity of taxa, and species in particular. However, other facets of diversity also need to be considered for a comprehensive understanding of evolutionary and ecological processes. This novel book demonstrates the advantages of adopting a functional approach to diversity in order to improve our understanding of the functioning of ecological systems and theircomponents. The focus is on plants, which are major components of these systems, and for which the functional approach has led to major scientific advances over the last 20 years. PlantFunctional Diversity presents the rationale for a trait-based approach to functional diversity in the context of comparative plant ecology and agroecology. It demonstrates how this approach can be used to address a number of highly debated questions in plant ecology pertaining to plant responses to their environment, controls on plant community structure, ecosystem properties, and the services these deliver to human societies. This research level text will be of particular relevance and use tograduate students and professional researchers in plant ecology, agricultural sciences and conservation biology.