The Future of Fuel Technology


Book Description

The Future of Fuel Technology documents the proceedings of a Conference held in the Netherlands, Amsterdam in May 1963. This book consists of four main topics relating to the future of fuel technology— combustion and heat transfer, generation of steam and power, furnaces, and domestic utilization. In these topics, this compilation specifically discusses the broad strategy of research and development in industrial fuel utilization, flame research at IJmuiden, and fuel utilization in water-tube boilers. The fuel requirements for fuel cells, high-intensity combustor for liquid fuels, and gaseous fuels in industrial furnaces are also discussed. This text likewise covers the manufactured domestic fuels for closed appliances and domestic gas utilization research and development. This publication is recommended for fuel technologists, engineers, and scientists concerned with advances in fuel technology.




Sustainable Fuel Technologies Handbook


Book Description

Sustainable Fuel Technologies Handbook provides a thorough thermodynamic analysis of new and current methods to give detailed insight into energy efficiency processes. This book includes the production methods, storage systems, and applications in various engines, as well as the safety related issues associated with all stages of production, storage, and utilization. With a comparison of cost implications and a techno-economic evaluation checking the feasibility of sustainable fuel use, this handbook is an invaluable reference source for researchers, professionals, and scientists working in the field of sustainability. The present power from solar, biomass, wind, hydrogen and other forms of renewable energy generated from sustainable sources can be harvested by various means and utilized in a variety of industries, supporting the need for clean fuels in modern society. However, there is still limited global availability and insufficient storage, which are required for efficient and effective harvesting of sustainable fuels. Discusses new and innovative sustainable fuel technologies Provides an integrated approach for modern tools, methodologies, and indicators in sustainable technologies Evaluates advanced fuel technologies alongside other transformational options




Vision 21


Book Description

Vision 21 reviews the goals of the Department of Energy's (DOE) Vision 21 Program (DOE's vision for the future of coal-based power generation) and to recommend systems and approaches for moving from concept to reality. Vision 21 is an ambitious, forward-looking program for improving technologies and reducing the environmental impacts of using fossil fuels (petroleum, natural gas, and coal) to produce electricity, process heat, transportation fuels, and chemicals.




Liquid Hydrogen


Book Description

to the German Edition This book is based on published material, oral presentations and lecture courses, as well as the author's personal research in the specific field of space technology and in the general areas of energy storage and transfer, and cryogenics. The science and technology of liquid hydrogen-once essential prere quisites for the rapid development of space technology-are now also proving to be more and more important for the energy production of the future. Hydrogen as an energy carrier can generally mediate the existing disparity between nuclear energy and regenerative energy, both of which are indispensable for the future. Hydrogen, as a secondary energy carrier, can be produced from these primary energy sources with minimal environmental impact and without the detrimental, long-term pollution effects of current fossil fuel technology. Hydrogen, therefore, represents the ultimate in energy technology. The initial, large-scale application of hydrogen as a secondary energy was as a high-energy rocket propellant. The procedures for its large scale liquefaction, storage and employment were generally developed in the U.S. Currently in Europe similar activities are being conducted only in France. The effort in West Germany involves testing hydrogen-oxygen and hydrogen-fluorine rocket engines, studying also the physical and technical characteristics of slush hydrogen-mixture of the solid and liquid phase-and is concentrating currently on R&D applications of liquid hydrogen as an alternate fuel. Similar activities are also being conducted in Japan and Canada.




Recent Trends in Fuel Cell Science and Technology


Book Description

This book covers all the proposed fuel cell systems including PEMFC, SOFC, PAFC, MCFC, regenerative fuel cells, direct alcohol fuel cells, and small fuel cells to replace batteries.




The Hype About Hydrogen


Book Description

Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.




Fuel Cells: Technologies for Fuel Processing


Book Description

Fuel Cells: Technologies for Fuel Processing provides an overview of the most important aspects of fuel reforming to the generally interested reader, researcher, technologist, teacher, student, or engineer. The topics covered include all aspects of fuel reforming: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development. While no attempt is made to describe the fuel cell itself, there is sufficient description of the fuel cell to show how it affects the fuel reformer. By focusing on the fundamentals, this book aims to be a source of information now and in the future. By avoiding time-sensitive information/analysis (e.g., economics) it serves as a single source of information for scientists and engineers in fuel processing technology. The material is presented in such a way that this book will serve as a reference for graduate level courses, fuel cell developers, and fuel cell researchers. Chapters written by experts in each area Extensive bibliography supporting each chapter Detailed index Up-to-date diagrams and full colour illustrations




Future of the Hydrogen Fuel Cell


Book Description







Alternative Fuels


Book Description

Revised and updated, Alternative Fuels addresses many of the factors affecting our energy use, including the availability and desirability of various fuels—especially the use of hydrogen. This new edition covers new hydrogen developments in technology, oil supplies and new drilling techniques, latest information on hydrogen highway projects, breakthroughs in fuel cell technology and ultra low emissions in transportation, the latest statistics on emerging oil markets, energy reserves, and carbon dioxide increases. Also included is material on energy policy, fuel supply trends, alternative scenarios, energy utilization, sustainable energy, cost analysis, fuel escalation, energy and development, regulatory issues, barriers to implementation, conversion systems, storage systems, thermodynamic efficiency, fuel chain efficiency, life-cycle efficiency, technology issues extracting, refining, air emission issues, safety, natural gas hydrogen gas, methanol, ethanol, steam reforming and fuel cells.