The Geometry and Dynamics of Magnetic Monopoles


Book Description

Systems governed by non-linear differential equations are of fundamental importance in all branches of science, but our understanding of them is still extremely limited. In this book a particular system, describing the interaction of magnetic monopoles, is investigated in detail. The use of new geometrical methods produces a reasonably clear picture of the dynamics for slowly moving monopoles. This picture clarifies the important notion of solitons, which has attracted much attention in recent years. The soliton idea bridges the gap between the concepts of "fields" and "particles," and is here explored in a fully three-dimensional context. While the background and motivation for the work comes from physics, the presentation is mathematical. This book is interdisciplinary and addresses concerns of theoretical physicists interested in elementary particles or general relativity and mathematicians working in analysis or geometry. The interaction between geometry and physics through non-linear partial differential equations is now at a very exciting stage, and the book is a contribution to this activity. Originally published in 1988. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Magnetic Monopoles


Book Description

Surveys the monopole problem on a few different levels, from classical electrodynamics up to N=2 SUSY Yang-Mills theory. and presents a compact, `bird's eye view' on the entire set of problems related with very notion of monopole including actual stand of the problem, related historical remarks and comprehensive bibliography. Presents original results obtained by the author in collaboration with other researches are presented as well as it summarizes the present status of the theory of monopoles and provides an introduction to the field.




Theory and Detection of Magnetic Monopoles in Gauge Theories


Book Description

These lecture notes discusses the developments both in the theoretical understanding of the physics and mathematics of magnetic monopoles as well as the ways in which they can be detected experimentally.The subject has now become highly interdisciplinary and recent monopole meetings have attracted participants from low temperature physics at one extreme to cosmology at the other.




Manifolds and Geometry


Book Description

This book brings together papers that cover a wide spectrum of areas and give an unsurpassed overview of research into differential geometry.




Michael Atiyah Collected Works


Book Description

Professor Atiyah is one of the greatest living mathematicians and is renowned in the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still actively involved in the mathematics community. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into seven volumes, with the first five volumes divided thematically and the sixth and seventh arranged by date. This seventh volume in Michael Atiyah's Collected Works contains a selection of his publications between 2002 and 2013, including his work on skyrmions; K-theory and cohomology; geometric models of matter; curvature, cones and characteristic numbers; and reflections on the work of Riemann, Einstein and Bott.







Geometry And Its Applications - Proceedings Of The Workshop In Honor Of Morio Obata


Book Description

In honour of the 65th birthday of Professor M Obata a workshop was held at Keio University. This volume includes notes on the talks and discussions which took place and cover a wide range of subjects on geometry, global analysis, topology and mathematical physics.




Einstein Metrics and Yang-Mills Connections


Book Description

This volume contains papers presented at the 27th Taniguchi International Symposium, held in Sanda, Japan - focusing on the study of moduli spaces of various geometric objects such as Einstein metrics, conformal structures, and Yang-Mills connections from algebraic and analytic points of view.;Written by over 15 authorities from around the world, Einstein Metrics and Yang-Mills Connections...: discusses current topics in Kaehler geometry, including Kaehler-Einstein metrics, Hermitian-Einstein connections and a new Kaehler version of Kawamata-Viehweg's vanishing theorem; explores algebraic geometric treatments of holomorphic vector bundles on curves and surfaces; addresses nonlinear problems related to Mong-Ampere and Yamabe-type equations as well as nonlinear equations in mathematical physics; and covers interdisciplinary topics such as twistor theory, magnetic monopoles, KP-equations, Einstein and Gibbons-Hawking metrics, and supercommutative algebras of superdifferential operators.;Providing a wide array of original research articles not published elsewhere Einstein Metrics and Yang-Mills Connections is for research mathematicians, including topologists and differential and algebraic geometers, theoretical physicists, and graudate-level students in these disciplines.




Quaternionic Structures In Mathematics And Physics - Proceedings Of The Second Meeting


Book Description

During the last five years, after the first meeting on “Quaternionic Structures in Mathematics and Physics”, interest in quaternionic geometry and its applications has continued to increase. Progress has been made in constructing new classes of manifolds with quaternionic structures (quaternionic Kähler, hyper-Kähler, hyper-complex, etc.), studying the differential geometry of special classes of such manifolds and their submanifolds, understanding relations between the quaternionic structure and other differential-geometric structures, and also in physical applications of quaternionic geometry. Some generalizations of classical quaternion-like structures (like HKT structures and hyper-Kähler manifolds with singularities) appeared naturally and were studied. Some of those results are published in this book.




Michael Atiyah Collected Works


Book Description

One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.