The Graduate Student’s Guide to Numerical Analysis ’98


Book Description

Detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics, with each set of notes presenting a self-contained guide to a current research area and supplemented by an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. They start from a level suitable for first year graduates in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. Readers will thus quickly gain an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described, and directions for future research given.




Accuracy and Stability of Numerical Algorithms


Book Description

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.




Matrix Preconditioning Techniques and Applications


Book Description

A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.




Stochastic Numerics for Mathematical Physics


Book Description

Stochastic differential equations have many applications in the natural sciences. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce solution of multi-dimensional problems for partial differential equations to integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. The authors propose many new special schemes, some published here for the first time. In the second part of the book they construct numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.




Acta Numerica 2000: Volume 9


Book Description

An annual volume presenting substantive survey articles in numerical analysis and scientific computing.




Computational Methods for Macromolecules: Challenges and Applications


Book Description

This special volume collects invited articles by participants of the Third International Workshop on Methods for Macromolecular Modeling, Courant Institute of Mathematical Sciences, Oct. 12-14, 2000. Leading developers of methods for biomolecular simulations review advances in Monte Carlo and molecular dynamics methods, free energy computational methods, fast electrostatics (particle-mesh Ewald and fast multipole methods), mathematics, and molecular neurobiology, nucleic acid simulations, enzyme reactions, and other essential applications in biomolecular simulations. A Perspectives article by the editors assesses the directions and impact of macromolecular modeling research, including genomics and proteomics. These reviews and original papers by applied mathematicians, theoretical chemists, biomedical researchers, and physicists are of interest to interdisciplinary research students, developers and users of biomolecular methods in academia and industry.




A Student's Guide to Numerical Methods


Book Description

The plain language style, worked examples and exercises in this book help students to understand the foundations of computational physics and engineering.







Discontinuous Galerkin Methods


Book Description

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.




Software Verification and Formal Methods for ML-Enabled Autonomous Systems


Book Description

This book constitutes the refereed proceedings of the 5th International Workshop on Software Verification and Formal Methods for ML-Enables Autonomous Systems, FoMLAS 2022, and the 15th International Workshop on Numerical Software Verification, NSV 2022, which took place in Haifa, Israel, in July/August 2022. The volume contains 8 full papers from the FoMLAS 2022 workshop and 3 full papers from the NSV 2022 workshop. The FoMLAS workshop is dedicated to the development of novel formal methods techniques to discussing on how formal methods can be used to increase predictability, explainability, and accountability of ML-enabled autonomous systems. NSV 2022 is focusing on the challenges of the verification of cyber-physical systems with machine learning components.