The Graph Isomorphism Algorithm


Book Description

We present a new polynomial-time algorithm for determining whether two given graphs are isomorphic or not. We prove that the algorithm is necessary and sufficient for solving the Graph Isomorphism Problem in polynomial-time, thus showing that the Graph Isomorphism Problem is in P. The semiotic theory for the recognition of graph structure is used to define a canonical form of the sign matrix of a graph. We prove that the canonical form of the sign matrix is uniquely identifiable in polynomial-time for isomorphic graphs. The algorithm is demonstrated by solving the Graph Isomorphism Problem for many of the hardest known examples. We implement the algorithm in C++ and provide a demonstration program for Microsoft Windows.




The Graph Isomorphism Problem


Book Description

Recently, a variety ofresults on the complexitystatusofthegraph isomorphism problem has been obtained. These results belong to the so-called structural part of Complexity Theory. Our idea behind this book is to summarize such results which might otherwise not be easily accessible in the literature, and also, to give the reader an understanding of the aims and topics in Structural Complexity Theory, in general. The text is basically self contained; the only prerequisite for reading it is some elementary knowledge from Complexity Theory and Probability Theory. It can be used to teach a seminar or a monographic graduate course, but also parts of it (especially Chapter 1) provide a source of examples for a standard graduate course on Complexity Theory. Many people have helped us in different ways III the process of writing this book. Especially, we would like to thank V. Arvind, R.V. Book, E. May ordomo, and the referee who gave very constructive comments. This book project was especially made possible by a DAAD grant in the "Acciones In tegrada" program. The third author has been supported by the ESPRIT project ALCOM-II.







Encyclopedia of Algorithms


Book Description

One of Springer’s renowned Major Reference Works, this awesome achievement provides a comprehensive set of solutions to important algorithmic problems for students and researchers interested in quickly locating useful information. This first edition of the reference focuses on high-impact solutions from the most recent decade, while later editions will widen the scope of the work. All entries have been written by experts, while links to Internet sites that outline their research work are provided. The entries have all been peer-reviewed. This defining reference is published both in print and on line.




Algorithms on Trees and Graphs


Book Description

Graph algorithms is a well-established subject in mathematics and computer science. Beyond classical application fields, such as approximation, combinatorial optimization, graphics, and operations research, graph algorithms have recently attracted increased attention from computational molecular biology and computational chemistry. Centered around the fundamental issue of graph isomorphism, this text goes beyond classical graph problems of shortest paths, spanning trees, flows in networks, and matchings in bipartite graphs. Advanced algorithmic results and techniques of practical relevance are presented in a coherent and consolidated way. This book introduces graph algorithms on an intuitive basis followed by a detailed exposition in a literate programming style, with correctness proofs as well as worst-case analyses. Furthermore, full C++ implementations of all algorithms presented are given using the LEDA library of efficient data structures and algorithms.




Proceedings of Integrated Intelligence Enable Networks and Computing


Book Description

This book presents best selected research papers presented at the First International Conference on Integrated Intelligence Enable Networks and Computing (IIENC 2020), held from May 25 to May 27, 2020, at the Institute of Technology, Gopeshwar, India (Government Institute of Uttarakhand Government and affiliated to Uttarakhand Technical University). The book includes papers in the field of intelligent computing. The book covers the areas of machine learning and robotics, signal processing and Internet of things, big data and renewable energy sources.




Combinatorial Algorithms


Book Description

This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.




A Java Library of Graph Algorithms and Optimization


Book Description

Because of its portability and platform-independence, Java is the ideal computer programming language to use when working on graph algorithms and other mathematical programming problems. Collecting some of the most popular graph algorithms and optimization procedures, A Java Library of Graph Algorithms and Optimization provides the source code for




Graph Algorithms and Applications 3


Book Description

This book contains Volume 6 of the Journal of Graph Algorithms and Applications (JGAA) . JGAA is a peer-reviewed scientific journal devoted to the publication of high-quality research papers on the analysis, design, implementation, and applications of graph algorithms. Areas of interest include computational biology, computational geometry, computer graphics, computer-aided design, computer and interconnection networks, constraint systems, databases, graph drawing, graph embedding and layout, knowledge representation, multimedia, software engineering, telecommunications networks, user interfaces and visualization, and VLSI circuit design. Graph Algorithms and Applications 3 presents contributions from prominent authors and includes selected papers from the Symposium on Graph Drawing (1999 and 2000). All papers in the book have extensive diagrams and offer a unique treatment of graph algorithms focusing on the important applications. Contents: Triangle-Free Planar Graphs and Segment Intersection Graphs (N de Castro et al.); Traversing Directed Eulerian Mazes (S Bhatt et al.); A Fast Multi-Scale Method for Drawing Large Graphs (D Harel & Y Koren); GRIP: Graph Drawing with Intelligent Placement (P Gajer & S G Kobourov); Graph Drawing in Motion (C Friedrich & P Eades); A 6-Regular Torus Graph Family with Applications to Cellular and Interconnection Networks (M Iridon & D W Matula); and other papers. Readership: Researchers and practitioners in theoretical computer science, computer engineering, and combinatorics and graph theory.




Permutation Group Algorithms


Book Description

Table of contents