The Image Processing Handbook


Book Description

Now in its fifth edition, John C. Russ‘s monumental image processing reference is an even more complete, modern, and hands-on tool than ever before. The Image Processing Handbook, Fifth Edition is fully updated and expanded to reflect the latest developments in the field. Written by an expert with unequalled experience and authority, it offers clea




The Colour Image Processing Handbook


Book Description

This book is aimed at those using colour image processing or researching new applications or techniques of colour image processing. It has been clear for some time that there is a need for a text dedicated to colour. We foresee a great increase in the use of colour over the coming years, both in research and in industrial and commercial applications. We are sure this book will prove a useful reference text on the subject for practicing engineers and scientists, for researchers, and for students at doctoral and, perhaps masters, level. It is not intended as an introductory text on image processing, rather it assumes that the reader is already familiar with basic image processing concepts such as image representation in digital form, linear and non-linear filtering, trans forms, edge detection and segmentation, and so on, and has some experience with using, at the least, monochrome equipment. There are many books cov ering these topics and some of them are referenced in the text, where appro priate. The book covers a restricted, but nevertheless, a very important, subset of image processing concerned with natural colour (that is colour as per ceived by the human visual system). This is an important field because it shares much technology and basic theory with colour television and video equipment, the market for which is worldwide and very large; and with the growing field of multimedia, including the use of colour images on the Inter net.




Handbook of Medical Imaging


Book Description

In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images




Introduction to Image Processing and Analysis


Book Description

Image processing comprises a broad variety of methods that operate on images to produce another image. A unique textbook, Introduction to Image Processing and Analysis establishes the programming involved in image processing and analysis by utilizing skills in C compiler and both Windows and MacOS programming environments. The provided mathematical background illustrates the workings of algorithms and emphasizes the practical reasons for using certain methods, their effects on images, and their appropriate applications. The text concentrates on image processing and measurement and details the implementation of many of the most widely used and most important image processing and analysis algorithms. Homework problems are included in every chapter with solutions available for download from the CRC Press website The chapters work together to combine image processing with image analysis. The book begins with an explanation of familiar pixel array and goes on to describe the use of frequency space. Chapters 1 and 2 deal with the algorithms used in processing steps that are usually accomplished by a combination of measurement and processing operations, as described in chapters 3 and 4. The authors present each concept using a mixture of three mutually supportive tools: a description of the procedure with example images, the relevant mathematical equations behind each concept, and the simple source code (in C), which illustrates basic operations. In particularly, the source code provides a starting point to develop further modifications. Written by John Russ, author of esteemed Image Processing Handbook now in its fifth edition, this book demonstrates functions to improve an image's of features and detail visibility, improve images for printing or transmission, and facilitate subsequent analysis.




Handbook of Image Processing and Computer Vision


Book Description

Across three volumes, the Handbook of Image Processing and Computer Vision presents a comprehensive review of the full range of topics that comprise the field of computer vision, from the acquisition of signals and formation of images, to learning techniques for scene understanding. The authoritative insights presented within cover all aspects of the sensory subsystem required by an intelligent system to perceive the environment and act autonomously. Volume 1 (From Energy to Image) examines the formation, properties, and enhancement of a digital image. Topics and features: • Describes the fundamental processes in the field of artificial vision that enable the formation of digital images from light energy • Covers light propagation, color perception, optical systems, and the analog-to-digital conversion of the signal • Discusses the information recorded in a digital image, and the image processing algorithms that can improve the visual qualities of the image • Reviews boundary extraction algorithms, key linear and geometric transformations, and techniques for image restoration • Presents a selection of different image segmentation algorithms, and of widely-used algorithms for the automatic detection of points of interest • Examines important algorithms for object recognition, texture analysis, 3D reconstruction, motion analysis, and camera calibration • Provides an introduction to four significant types of neural network, namely RBF, SOM, Hopfield, and deep neural networks This all-encompassing survey offers a complete reference for all students, researchers, and practitioners involved in developing intelligent machine vision systems. The work is also an invaluable resource for professionals within the IT/software and electronics industries involved in machine vision, imaging, and artificial intelligence. Dr. Cosimo Distante is a Research Scientist in Computer Vision and Pattern Recognition in the Institute of Applied Sciences and Intelligent Systems (ISAI) at the Italian National Research Council (CNR). Dr. Arcangelo Distante is a researcher and the former Director of the Institute of Intelligent Systems for Automation (ISSIA) at the CNR. His research interests are in the fields of Computer Vision, Pattern Recognition, Machine Learning, and Neural Computation.




The Image Processing Handbook


Book Description

Whether obtained by microscopes, space probes, or the human eye, the same basic tools can be applied to acquire, process, and analyze the data contained in images. Ideal for self study, The Image Processing Handbook, Sixth Edition, first published in 1992, raises the bar once again as the gold-standard reference on this subject. Using extensive new illustrations and diagrams, it offers a logically organized exploration of the important relationship between 2D images and the 3D structures they reveal. Provides Hundreds of Visual Examples in FULL COLOR! The author focuses on helping readers visualize and compare processing and measurement operations and how they are typically combined in fields ranging from microscopy and astronomy to real-world scientific, industrial, and forensic applications. Presenting methods in the order in which they would be applied in a typical workflow—from acquisition to interpretation—this book compares a wide range of algorithms used to: Improve the appearance, printing, and transmission of an image Prepare images for measurement of the features and structures they reveal Isolate objects and structures, and measure their size, shape, color, and position Correct defects and deal with limitations in images Enhance visual content and interpretation of details This handbook avoids dense mathematics, instead using new practical examples that better convey essential principles of image processing. This approach is more useful to develop readers’ grasp of how and why to apply processing techniques and ultimately process the mathematical foundations behind them. Much more than just an arbitrary collection of algorithms, this is the rare book that goes beyond mere image improvement, presenting a wide range of powerful example images that illustrate techniques involved in color processing and enhancement. Applying his 50-year experience as a scientist, educator, and industrial consultant, John Russ offers the benefit of his image processing expertise for fields ranging from astronomy and biomedical research to food science and forensics. His valuable insights and guidance continue to make this handbook a must-have reference.




The Image Processing Handbook


Book Description

Consistently rated as the best overall introduction to computer-based image processing, The Image Processing Handbook covers two-dimensional (2D) and three-dimensional (3D) imaging techniques, image printing and storage methods, image processing algorithms, image and feature measurement, quantitative image measurement analysis, and more. Incorporating image processing and analysis examples at all scales, from nano- to astro-, this Seventh Edition: Features a greater range of computationally intensive algorithms than previous versions Provides better organization, more quantitative results, and new material on recent developments Includes completely rewritten chapters on 3D imaging and a thoroughly revamped chapter on statistical analysis Contains more than 1700 references to theory, methods, and applications in a wide variety of disciplines Presents 500+ entirely new figures and images, with more than two-thirds appearing in color The Image Processing Handbook, Seventh Edition delivers an accessible and up-to-date treatment of image processing, offering broad coverage and comparison of algorithms, approaches, and outcomes.




The Image Processing Handbook, Seventh Edition


Book Description

Avoiding dense mathematics, this handbook uses practical examples to convey the essential principles of image processing, an approach that is more useful in developing a reader's grasp of how and why to apply processing techniques. At least half the illustrations and examples contained within this edition include the newer "more aggressive" computer methods in comparisons. The chapters on 3D have been entirely rewritten with better organization and more quantitative results. An extensive amount of references has also been added.




The Image Processing Handbook, Sixth Edition


Book Description

Whether obtained by microscopes, space probes, or the human eye, the same basic tools can be applied to acquire, process, and analyze the data contained in images. Ideal for self study, The Image Processing Handbook, Sixth Edition, first published in 1992, raises the bar once again as the gold-standard reference on this subject. Using extensive new illustrations and diagrams, it offers a logically organized exploration of the important relationship between 2D images and the 3D structures they reveal. Provides Hundreds of Visual Examples in FULL COLOR! The author focuses on helping readers visualize and compare processing and measurement operations and how they are typically combined in fields ranging from microscopy and astronomy to real-world scientific, industrial, and forensic applications. Presenting methods in the order in which they would be applied in a typical workflow—from acquisition to interpretation—this book compares a wide range of algorithms used to: Improve the appearance, printing, and transmission of an image Prepare images for measurement of the features and structures they reveal Isolate objects and structures, and measure their size, shape, color, and position Correct defects and deal with limitations in images Enhance visual content and interpretation of details This handbook avoids dense mathematics, instead using new practical examples that better convey essential principles of image processing. This approach is more useful to develop readers’ grasp of how and why to apply processing techniques and ultimately process the mathematical foundations behind them. Much more than just an arbitrary collection of algorithms, this is the rare book that goes beyond mere image improvement, presenting a wide range of powerful example images that illustrate techniques involved in color processing and enhancement. Applying his 50-year experience as a scientist, educator, and industrial consultant, John Russ offers the benefit of his image processing expertise for fields ranging from astronomy and biomedical research to food science and forensics. His valuable insights and guidance continue to make this handbook a must-have reference.




Advanced Signal Processing Handbook


Book Description

Advances in digital signal processing algorithms and computer technology have combined to produce real-time systems with capabilities far beyond those of just few years ago. Nonlinear, adaptive methods for signal processing have emerged to provide better array gain performance, however, they lack the robustness of conventional algorithms. The challenge remains to develop a concept that exploits the advantages of both-a scheme that integrates these methods in practical, real-time systems. The Advanced Signal Processing Handbook helps you meet that challenge. Beyond offering an outstanding introduction to the principles and applications of advanced signal processing, it develops a generic processing structure that takes advantage of the similarities that exist among radar, sonar, and medical imaging systems and integrates conventional and nonlinear processing schemes.