Joint Vision 2020


Book Description

Joint Vision 2020 is the conceptual template for how we will channel the vitality of our people and leverage technological opportunities to achieve new levels of effectiveness in joint warfighting.




Managing Materials for a Twenty-first Century Military


Book Description

Since 1939, the U.S. government, using the National Defense Stockpile (NDS), has been stockpiling critical strategic materials for national defense. The economic and national security environments, however, have changed significantly from the time the NDS was created. Current threats are more varied, production and processing of key materials is more globally dispersed, the global competition for raw materials is increasing, the U.S. military is more dependent on civilian industry, and industry depends far more on just-in-time inventory control. To help determine the significance of these changes for the strategic materials stockpile, the Department of Defense asked the NRC to assess the continuing need for and value of the NDS. This report begins with the historical context of the NDS. It then presents a discussion of raw-materials and minerals supply, an examination of changing defense planning and materials needs, an analysis of modern tools used to manage materials supply chains, and an assessment of current operational practices of the NDS.




Performance Based Logistics: A Program Manager's Product Support Guide


Book Description

Performance Based Logistics (PBL) is the preferred Department of Defense (DoD) product Support strategy to improve weapons system readiness by procuring performance, which capitalizes on integrated logistics chains and public/private partnerships. The cornerstone of PBL is the purchase of weapons system sustainment as an affordable, integrated package based on output measures such as weapons system availability, rather than input measures, such as parts and technical services. The Quadrennial Defense Review (QDR) and /the Defense Planning Guidance (DPG) directed the application of PBL to new and legacy weapons systems. PBL Implementation is also mandated by DoD Directive 5000.1, The Defense Acquisition System, May 12, 2003. This guide is a tool for Program Managers (PMs) and Product Support Managers (PSMs) as they design product support strategies for new programs or major modifications, or as they re-engineer product support strategies for existing fielded systems. It presents a method for implementing a PBL product support strategy. PBL delineates outcome performance goals of systems, ensures that responsibilities are assigned, provides incentives for attaining these goals, and facilitates the overall life cycle management of system reliability, supportability, and total owner ship costs. It is an integrated acquisition and logistics process for providing weapons system capability.







Air Force Software Sustainment and Maintenance of Weapons Systems


Book Description

Modern software engineering practices, pioneered by the commercial software community, have begun transforming Department of Defense (DoD) software development, integration processes, and deployment cycles. DoD must further adopt and adapt these practices across the full defense software life cycle - and this adoption has implications for software maintenance and software sustainment across the U.S. defense community. Air Force Software Sustainment and Maintenance of Weapons Systems evaluates the current state of software sustainment within the U.S. Air Force and recommends changes to the software sustainment enterprise. This report assesses how software that is embedded within weapon platforms is currently sustained within the U.S. Air Force; identifies the unique requirements of software sustainment; develops and recommends a software sustainment work breakdown structure; and identifies the necessary personnel skill sets and core competencies for software sustainment.




An Assessment of Undersea Weapons Science and Technology


Book Description

The Department of the Navy strives to maintain, through its Office of Naval Research (ONR), a vigorous science and technology (S&T) program in those areas considered critically important to U.S. naval superiority in the maritime environment, including littoral waters and shore regions. In pursuing its S&T investments in such areas, ONR must ensure that (1) a robust U.S. research capability to work on long-term S&T problems in areas of interest to the Department of the Navy and the Department of Defense is sustained, (2) an adequate supply of new scientists and engineers in these areas is maintained, and (3) S&T products and processes necessary to ensure future superiority in naval warfare are provided. One of the critical areas for the Department of the Navy is undersea weapons. An Assessment of Undersea Weapons Science and Technology assesses the health of the existing Navy program in undersea weapons, evaluates the Navy's research effort to develop the capabilities needed for future undersea weapons, identifies non-Navy-sponsored research and development efforts that might facilitate the development of such advanced weapons capabilities, and makes recommendations to focus the Navy's research program so that it can meet future needs.










Aging Avionics in Military Aircraft


Book Description

Extending the life of an airframe has proven challenging and costly. Extending the life of an avionics system, however, is one of the most critical and difficult aspects of extending total aircraft system lifetimes. Critical components go out of production or become obsolete, and many former suppliers of military-grade components have gone out of business. From 1986 to 1996, for example, the percentage of discontinued military/aerospace electronic devices nearly doubledâ€"from 7.5 percent to 13.5 percent. In addition, legacy avionics systems, which were designed to meet requirements of the past, generally lack the full capability to perform new missions, meet new threats, or perform well in the new information-intensive battlefield environments. As the legacy aircraft fleet ages, avionics systems will become more and more difficult to support and maintain. Whereas the military once provided a large and profitable market for the electronics industry, the military electronics market today constitutes less than 1 percent of the commercial market. As a result, the military must increasingly rely on commercial off-the-shelf (COTS) technologies for its avionics hardware and software. Although COTS items are generally less expensive than comparable items designed especially to meet military specifications, the technology-refresh cycle for COTS is typically 18 months or less, which exacerbates the obsolescence problem for aircraft whose lifetimes are measured in decades. The short refresh cycle is driven mostly by the tremendous advances in computer systems, which comprise an increasing percentage of avionics content. In response to a request by the Assistant Secretary of the Air Force for Acquisition, the National Research Council convened the Committee on Aging Avionics in Military Aircraft, under the auspices of the Air Force Science and Technology Board, to conduct this study. This report summarizes the following: Gather information from DoD, other government agencies, and industrial sources on the status of, and issues surrounding, the aging avionics problem. This should include briefings from and discussions with senior industry executives and military acquisition and support personnel. A part of this activity should include a review of Air Force Materiel Command's study on diminishing manufacturing sources to recommend ways to mitigate avionics obsolescence. Provide recommendations for new approaches and innovative techniques to improve management of aging avionics, with the goal of helping the Air Force to enhance supportability and replacement of aging and obsolescing avionics and minimize associated life cycle costs. Comment on the division of technology responsibility between DoD and industry.