Mankind Beyond Earth


Book Description

Seeking to reenergize Americans' passion for the space program, the value of further exploration of the Moon, and the importance of human beings on the final frontier, Claude A. Piantadosi presents a rich history of American space exploration and its major achievements. He emphasizes the importance of reclaiming national command of our manned program and continuing our unmanned space missions, and he stresses the many adventures that still await us in the unfolding universe. Acknowledging space exploration's practical and financial obstacles, Piantadosi challenges us to revitalize American leadership in space exploration in order to reap its scientific bounty. Piantadosi explains why space exploration, a captivating story of ambition, invention, and discovery, is also increasingly difficult and why space experts always seem to disagree. He argues that the future of the space program requires merging the practicalities of exploration with the constraints of human biology. Space science deals with the unknown, and the margin (and budget) for error is small. Lethal near-vacuum conditions, deadly cosmic radiation, microgravity, vast distances, and highly scattered resources remain immense physical problems. To forge ahead, America needs to develop affordable space transportation and flexible exploration strategies based in sound science. Piantadosi closes with suggestions for accomplishing these goals, combining his healthy skepticism as a scientist with an unshakable belief in space's untapped—and wholly worthwhile—potential.




The Impact of Space Science on Mankind


Book Description

Nobel Symposium No 31 on The Impact of Space Science on Man kind was held at Spatind, Norway, September 7 - 12, 1975. Twenty seven leading experts from the United States, the U. S. S. R. and Western Europe attended the Symposium. Four main subjects were discussed: The Impact of Space Science, introduced by Profe. ssor Reimar Lust; The Impact of Space Communica tion, ihtroduced by Dr Joseph Charyk; The Impact of Earth Resources Exploration from Space, introduced by Dr William Nordberg; and The Impact of Space Assisted Meteorology, introduced by Dr Robert M White. This book contains edited summaries of the papers presented at the Symposium and summaries of the discussions. The Symposium was financed by the Nobel Foundation through grants from the Tercentenary Foundation of the Bank of Sweden and organized by a special committee appointed by the Norwegian Nobel Institute. Tim Greve Finn Lied Erik Tandberg vii CONTENTS The Impact of Space Science 1 R. Lust The Impact of Space Science on Mankind (Discussion) 13 T. R. Larsen (ed. ) Satellite Communications 25 J. V. Charyk The Impact of Space Communication (Discussion) 57 G. Rosenberg (ed. ) The Impact of Earth Resources Exploration from Space 67 W. Nordberg The Impact of Earth Resources Exploration from Space 79 (Discussion) E. Tandberg (ed. ) The Environmental Satellite: What It Means for Man 91 R. M. White The Impact of Space Assisted Meteorology (Discussion) 111 E. Tandberg (ed.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.







Recapturing a Future for Space Exploration


Book Description

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.




Forging the Future of Space Science


Book Description

From September 2007 to June 2008 the Space Studies Board conducted an international public seminar series, with each monthly talk highlighting a different topic in space and Earth science. The principal lectures from the series are compiled in Forging the Future of Space Science. The topics of these events covered the full spectrum of space and Earth science research, from global climate change, to the cosmic origins of life, to the exploration of the Moon and Mars, to the scientific research required to support human spaceflight. The prevailing messages throughout the seminar series as demonstrated by the lectures in this book are how much we have accomplished over the past 50 years, how profound are our discoveries, how much contributions from the space program affect our daily lives, and yet how much remains to be done. The age of discovery in space and Earth science is just beginning. Opportunities abound that will forever alter our destiny.




The Overview Effect


Book Description

Using interviews with and writings by astronauts and cosmonauts, discusses how viewing the Earth from space and from the moon affect space explorers' perceptions of the world and humanity, and how those changes are likewise felt in contemporary society. The author views space exploration and eventual colonization as an inevitable step in the evolution of human society and consciousness, one which offers new perspectives on the problems facing us down here on Earth. Annotation copyrighted by Book News, Inc., Portland, OR




Space Technologies for the Benefit of Human Society and Earth


Book Description

Overview of Space Technology It has been over 50 years since the rst satellite was sent into orbit, and the impact of space technology can be felt in many aspects in our day to day life. In addition to the convenience of knowing exactly where we are on the planet via GPS satellites; or deciding what to pack for a trip based on forecasts from weather satellites; watching CNNinaremotevillageviabroadcasting satellites;therearenowsomecrucialen- ronmental uses of Space technologies in the areas of natural resources management and environmental monitoring. Remotely sensed data reveals an unparallel view of the Earth for systems that require synoptic or periodic observations such as inv- tory control, surveying, agriculture, business, mineralogy, hydrography, geology, land mass cover, land utilization and environment monitoring. The advancement of remote sensing has made remote sensed data more affordable and available to merge with a variety of data sources to create mash-ups. The amalgamation of these data sources into disciplines such as agriculture, urban planning, web applications, cartography, geodetic reference systems, and global navigation satellite systems, are an important advancement of space applications and space science. Space Technology and Millennium Development Goals (MDGs) The MDGs are a set of time-bound, measurable goals and targets that are global as well as country-speci c for combating poverty, hunger, diseases, illiteracy, envir- mental degradation and discrimination against women.




Space Safety and Human Performance


Book Description

Space Safety and Human Performance provides a comprehensive reference for engineers and technical managers within aerospace and high technology companies, space agencies, operators, and consulting firms. The book draws upon the expertise of the world's leading experts in the field and focuses primarily on humans in spaceflight, but also covers operators of control centers on the ground and behavior aspects of complex organizations, thus addressing the entire spectrum of space actors. During spaceflight, human performance can be deeply affected by physical, psychological and psychosocial stressors. Strict selection, intensive training and adequate operational rules are used to fight performance degradation and prepare individuals and teams to effectively manage systems failures and challenging emergencies. The book is endorsed by the International Association for the Advancement of Space Safety (IAASS). - 2019 PROSE Awards - Winner: Category: Engineering and Technology: Association of American Publishers - Provides information on critical aspects of human performance in space missions - Addresses the issue of human performance, from physical and psychosocial stressors that can degrade performance, to selection and training principles and techniques to enhance performance - Brings together essential material on: cognition and human error; advanced analysis methods such as human reliability analysis; environmental challenges and human performance in space missions; critical human factors and man/machine interfaces in space systems design; crew selection and training; and organizational behavior and safety culture - Includes an endorsement by the International Association for the Advancement of Space Safety (IAASS)




Societal Impact of Spaceflight


Book Description