Response of Streamflow and Sediment Loading in the Apalachicola River, Florida to Climate and Land Use Land Cover Change


Book Description

Changes in LULC showed minimal effects on flow while more sediment loading was associated with increased agriculture and urban areas and decreased forested regions. A nonlinear response for both streamflow and sediment loading was observed by coupling climate and LULC change into the hydrologic model, indicating changes in one may exacerbate or dampen the effects of the other. Peak discharge and sediment loading associated with extreme events showed both increases and decreases in the future, with variability dependent on the GCM used. Similar behavior was observed in the total discharge resulting from extreme events and increased total sediment load was frequently predicted for the A2 and A1B scenarios for simulations involving changes in climate only, LULC only, and both climate and LULC. Output from the individual GCMs predicted differing responses of streamflow and sediment loading to changes in climate on both the seasonal and event scale. Additional region-specific research is needed to better optimize the GCM ensemble and eliminate those that provide erroneous output. In addition, future assessment of the downscaling approach to capture extreme events is required. Findings from this study can be used to further understand climate and LULC implications to the Apalachicola Bay and surrounding region as well as similar fluvial estuaries while providing tools to better guide management and mitigation practices.