The Influence of Demographic Stochasticity on Population Dynamics


Book Description

The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact subject to a great deal of noise. Relevant examples include social insects competing for resources, molecules undergoing chemical reactions in a cell and a pool of genomes subject to evolution. When the population size is small, novel macroscopic phenomena can arise, which can be analyzed using the theory of stochastic processes. This thesis is centered on two unsolved problems in population dynamics: the symmetry breaking observed in foraging populations and the robustness of spatial patterns. We argue that these problems can be resolved with the help of two novel concepts: noise-induced bistable states and stochastic patterns.




Stochastic Population Dynamics in Ecology and Conservation


Book Description

1. Demographic and environmental stochasticity -- 2. Extinction dynamics -- 3. Age structure -- 4. Spatial structure -- 5. Population viability analysis -- 6. Sustainable harvesting -- 7. Species diversity -- 8. Community dynamics.




Sensitivity Analysis: Matrix Methods in Demography and Ecology


Book Description

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.




Workshop on Branching Processes and Their Applications


Book Description

One of the charms of mathematics is the contrast between its generality and its applicability to concrete, even everyday, problems. Branching processes are typical in this. Their niche of mathematics is the abstract pattern of reproduction, sets of individuals changing size and composition through their members reproducing; in other words, what Plato might have called the pure idea behind demography, population biology, cell kinetics, molecular replication, or nuclear ?ssion, had he known these scienti?c ?elds. Even in the performance of algorithms for sorting and classi?cation there is an inkling of the same pattern. In special cases, general properties of the abstract ideal then interact with the physical or biological or whatever properties at hand. But the population, or bran- ing, pattern is strong; it tends to dominate, and here lies the reason for the extreme usefulness of branching processes in diverse applications. Branching is a clean and beautiful mathematical pattern, with an intellectually challenging intrinsic structure, and it pervades the phenomena it underlies.




Integrated Population Models


Book Description

Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians




Animal Social Networks


Book Description

The scientific study of networks - computer, social, and biological - has received an enormous amount of interest in recent years. However, the network approach has been applied to the field of animal behaviour relatively late compared to many other biological disciplines. Understanding social network structure is of great importance for biologists since the structural characteristics of any network will affect its constituent members and influence a range of diverse behaviours. These include finding and choosing a sexual partner, developing and maintaining cooperative relationships, and engaging in foraging and anti-predator behavior. This novel text provides an overview of the insights that network analysis has provided into major biological processes, and how it has enhanced our understanding of the social organisation of several important taxonomic groups. It brings together researchers from a wide range of disciplines with the aim of providing both an overview of the power of the network approach for understanding patterns and process in animal populations, as well as outlining how current methodological constraints and challenges can be overcome. Animal Social Networks is principally aimed at graduate level students and researchers in the fields of ecology, zoology, animal behaviour, and evolutionary biology but will also be of interest to social scientists.




Conservation Biology


Book Description

• • • John Harper • • • Nature conservation has changed from an idealistic philosophy to a serious technology. Ecology, the science that underpins the technol ogy of conservation, is still too immature to provide all the wisdom that it must. It is arguable that the desire to conserve nature will in itself force the discipline of ecology to identify fundamental prob lems in its scientific goals and methods. In return, ecologists may be able to offer some insights that make conservation more practicable (Harper 1987). The idea that nature (species or communities) is worth preserv ing rests on several fundamental arguments, particularly the argu ment of nostalgia and the argument of human benefit and need. Nostalgia, of course, is a powerful emotion. With some notable ex ceptions, there is usually a feeling of dismay at a change in the sta tus quo, whether it be the loss of a place in the country for walking or rambling, the loss of a painting or architectural monument, or that one will never again have the chance to see a particular species of bird or plant.




Dynamic Food Webs


Book Description

Dynamic Food Webs challenges us to rethink what factors may determine ecological and evolutionary pathways of food web development. It touches upon the intriguing idea that trophic interactions drive patterns and dynamics at different levels of biological organization: dynamics in species composition, dynamics in population life-history parameters and abundances, and dynamics in individual growth, size and behavior. These dynamics are shown to be strongly interrelated governing food web structure and stability and the role of populations and communities play in ecosystem functioning. Dynamic Food Webs not only offers over 100 illustrations, but also contains 8 riveting sections devoted to an understanding of how to manage the effects of environmental change, the protection of biological diversity and the sustainable use of natural resources. Dynamic Food Webs is a volume in the Theoretical Ecology series. - Relates dynamics on different levels of biological organization: individuals, populations, and communities - Deals with empirical and theoretical approaches - Discusses the role of community food webs in ecosystem functioning - Proposes methods to assess the effects of environmental change on the structure of biological communities and ecosystem functioning - Offers an analyses of the relationship between complexity and stability in food webs




Allee Effects in Ecology and Conservation


Book Description

Allee effects are relevant to biologists who study rarity, and to conservationists and managers who try and protect endangered populations. This book provides an overview of the Allee effect, the mechanisms which drive it and its consequences for population dynamics, evolution and conservation.




Using Science to Improve the BLM Wild Horse and Burro Program


Book Description

Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward reviews the science that underpins the Bureau of Land Management's oversight of free-ranging horses and burros on federal public lands in the western United States, concluding that constructive changes could be implemented. The Wild Horse and Burro Program has not used scientifically rigorous methods to estimate the population sizes of horses and burros, to model the effects of management actions on the animals, or to assess the availability and use of forage on rangelands. Evidence suggests that horse populations are growing by 15 to 20 percent each year, a level that is unsustainable for maintaining healthy horse populations as well as healthy ecosystems. Promising fertility-control methods are available to help limit this population growth, however. In addition, science-based methods exist for improving population estimates, predicting the effects of management practices in order to maintain genetically diverse, healthy populations, and estimating the productivity of rangelands. Greater transparency in how science-based methods are used to inform management decisions may help increase public confidence in the Wild Horse and Burro Program.