The Influence of Solomon Lefschetz in Geometry and Topology


Book Description

The influence of Solomon Lefschetz (1884-1972) in geometry and topology 40 years after his death has been very profound. Lefschetz's influence in Mexican mathematics has been even greater. In this volume, celebrating 50 years of mathematics at Cinvestav-México, many of the fields of geometry and topology are represented by some of the leaders of their respective fields. This volume opens with Michael Atiyah reminiscing about his encounters with Lefschetz and México. Topics covered in this volume include symplectic flexibility, Chern-Simons theory and the theory of classical theta functions, toric topology, the Beilinson conjecture for finite-dimensional associative algebras, partial monoids and Dold-Thom functors, the weak b-principle, orbit configuration spaces, equivariant extensions of differential forms for noncompact Lie groups, dynamical systems and categories, and the Nahm pole boundary condition.




Algebraic Geometry and Topology


Book Description

Many of the developments of modern algebraic geometry and topology stem from the ideas of S. Lefschetz. These are featured in this volume of contemporary research papers contributed by mathematical colleagues to celebrate his seventieth birthday. Originally published in 1957. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Modern Geometry


Book Description

This book contains a collection of survey articles of exciting new developments in geometry, written in tribute to Simon Donaldson to celebrate his 60th birthday. Reflecting the wide range of Donaldson's interests and influence, the papers range from algebraic geometry and topology through symplectic geometry and geometric analysis to mathematical physics. Their expository nature means the book acts as an invitation to the various topics described, while also giving a sense of the links between these different areas and the unity of modern geometry.




Stacks and Categories in Geometry, Topology, and Algebra


Book Description

This volume contains the proceedings of the CATS4 Conference on Higher Categorical Structures and their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, held from July 2-7, 2012, at CIRM in Luminy, France. Over the past several years, the CATS conference series has brought together top level researchers from around the world interested in relative and higher category theory and its applications to classical mathematical domains. Included in this volume is a collection of articles covering the applications of categories and stacks to geometry, topology and algebra. Techniques such as localization, model categories, simplicial objects, sheaves of categories, mapping stacks, dg structures, hereditary categories, and derived stacks, are applied to give new insight on cluster algebra, Lagrangians, trace theories, loop spaces, structured surfaces, stability, ind-coherent complexes and 1-affineness showing up in geometric Langlands, branching out to many related topics along the way.




The Abel Prize 2013-2017


Book Description

The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.




Geometry, Groups and Dynamics


Book Description

This volume contains the proceedings of the ICTS Program: Groups, Geometry and Dynamics, held December 3-16, 2012, at CEMS, Almora, India. The activity was an academic tribute to Ravi S. Kulkarni on his turning seventy. Articles included in this volume, both introductory and advanced surveys, represent the broad area of geometry that encompasses a large portion of group theory (finite or otherwise) and dynamics in its proximity. These areas have been influenced by Kulkarni's ideas and are closely related to his work and contribution.




Hodge Theory and Classical Algebraic Geometry


Book Description

This volume contains the proceedings of a conference on Hodge Theory and Classical Algebraic Geometry, held May 13-15, 2013, at The Ohio State University, Columbus, OH. Hodge theory is a powerful tool for the study and classification of algebraic varieties. This volume surveys recent progress in Hodge theory, its generalizations, and applications. The topics range from more classical aspects of Hodge theory to modern developments in compactifications of period domains, applications of Saito's theory of mixed Hodge modules, and connections with derived category theory and non-commutative motives.




Biological Fluid Dynamics: Modeling, Computations, and Applications


Book Description

This volume contains the Proceedings of the AMS Special Session on Biological Fluid Dynamics: Modeling, Computation, and Applications, held on October 13, 2012, at Tulane University, New Orleans, Louisiana. In recent years, there has been increasing interest in the development and application of advanced computational techniques for simulating fluid motion driven by immersed flexible structures. That interest is motivated, in large part, by the multitude of applications in physiology and biology. In some biological systems, fluid motion is driven by active biological tissues, which are typically constructed of fibers that are surrounded by fluid. Not only do the fibers hold the tissues together, they also transmit forces that ultimately result in fluid motion. In other examples, the fluid may flow through conduits such as blood vessels or airways that are flexible or active. That is, those conduits may react to and affect the fluid dynamics. This volume responds to the widespread interest among mathematicians, biologists, and engineers in fluid-structure interactions problems. Included are expository and review articles in biological fluid dynamics. Applications that are considered include ciliary motion, upside-down jellyfish, biological feedback in the kidney, peristalsis and dynamic suction pumping, and platelet cohesion and adhesion.




Algorithmic Problems of Group Theory, Their Complexity, and Applications to Cryptography


Book Description

This volume contains the proceedings of the AMS Special Session on Algorithmic Problems of Group Theory and Their Complexity, held January 9-10, 2013 in San Diego, CA and the AMS Special Session on Algorithmic Problems of Group Theory and Applications to Information Security, held April 6-7, 2013 at Boston College, Chestnut Hill, MA. Over the past few years the field of group-based cryptography has attracted attention from both group theorists and cryptographers. The new techniques inspired by algorithmic problems in non-commutative group theory and their complexity have offered promising ideas for developing new cryptographic protocols. The papers in this volume cover algorithmic group theory and applications to cryptography.




Nonlinear Wave Equations


Book Description

This volume contains the proceedings of the AMS Special Session on Nonlinear Waves and Integrable Systems, held on April 13-14, 2013, at the University of Colorado, Boulder, Colorado. The field of nonlinear waves is an exciting area of modern mathematical research that also plays a major role in many application areas from physics and fluids. The articles in this volume present a diverse cross section of topics from this field including work on the Inverse Scattering Transform, scattering theory, inverse problems, numerical methods for dispersive wave equations, and analytic and computational methods for free boundary problems. Significant attention to applications is also given throughout the articles with an extensive presentation on new results in the free surface problem in fluids. This volume will be useful to students and researchers interested in learning current techniques in studying nonlinear dispersive systems from both the integrable systems and computational points of view.