The Integral Manifolds of the Three Body Problem


Book Description

The phase space of the spatial three-body problem is an open subset in R18. Holding the ten classical integrals of energu, center of mass, linear and angular momentum fixed defines an eight dimensional manifold. For fixed nonzero angular momentum, the topology of this manifold depends only on the energy. This volume computes the homology of this manifold for all energy values. This table of homology shows that for negative energy, the integral manifolds undergo seven bifurcations. Four of these are the well-known bifurcations due to central configurations, and three are due to "critical points at infinity". This disproves Birkhoffs conjecture that the bifurcations occur only at central configurations.










The Three-Body Problem


Book Description

Recent research on the theory of perturbations, the analytical approach and the quantitative analysis of the three-body problem have reached a high degree of perfection. The use of electronics has aided developments in quantitative analysis and has helped to disclose the extreme complexity of the set of solutions. This accelerated progress has given new orientation and impetus to the qualitative analysis that is so complementary to the quantitative analysis. The book begins with the various formulations of the three-body problem, the main classical results and the important questions and conjectures involved in this subject. The main part of the book describes the remarkable progress achieved in qualitative analysis which has shed new light on the three-body problem. It deals with questions such as escapes, captures, periodic orbits, stability, chaotic motions, Arnold diffusion, etc. The most recent tests of escape have yielded very impressive results and border very close on the true limits of escape, showing the domain of bounded motions to be much smaller than was expected. An entirely new picture of the three-body problem is emerging, and the book reports on this recent progress. The structure of the solutions for the three-body problem lead to a general conjecture governing the picture of solutions for all Hamiltonian problems. The periodic, quasi-periodic and almost-periodic solutions form the basis for the set of solutions and separate the chaotic solutions from the open solutions.




The Restricted Three-Body Problem and Holomorphic Curves


Book Description

The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019




Introduction to Hamiltonian Dynamical Systems and the N-Body Problem


Book Description

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)







Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations


Book Description

This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.




International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999


Book Description

This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences




Flat Extensions of Positive Moment Matrices: Recursively Generated Relations


Book Description

In this book, the authors develop new computational tests for existence and uniqueness of representing measures $\mu$ in the Truncated Complex Moment Problem: $\gamma {ij}=\int \bar zizj\, d\mu$ $(0\le i+j\le 2n)$. Conditions for the existence of finitely atomic representing measures are expressed in terms of positivity and extension properties of the moment matrix $M(n)(\gamma )$ associated with $\gamma \equiv \gamma {(2n)}$: $\gamma {00}, \dots ,\gamma {0,2n},\dots ,\gamma {2n,0}$, $\gamma {00}>0$. This study includes new conditions for flat (i.e., rank-preserving) extensions $M(n+1)$ of $M(n)\ge 0$; each such extension corresponds to a distinct rank $M(n)$-atomic representing measure, and each such measure is minimal among representing measures in terms of the cardinality of its support. For a natural class of moment matrices satisfying the tests of recursive generation, recursive consistency, and normal consistency, the existence problem for minimal representing measures is reduced to the solubility of small systems of multivariable algebraic equations. In a variety of applications, including cases of the quartic moment problem ($n=2$), the text includes explicit contructions of minimal representing measures via the theory of flat extensions. Additional computational texts are used to prove non-existence of representing measures or the non-existence of minimal representing measures. These tests are used to illustrate, in very concrete terms, new phenomena, associated with higher-dimensional moment problems that do not appear in the classical one-dimensional moment problem.