Leveraging Generative AI for Enterprise Architecture


Book Description

When it comes to understanding the potential of generative AI in the field of enterprise architecture, the possibilities are truly limitless. In this subchapter, we will explore how this technology can be leveraged to transform the way organizations approach their architectural design and decision-making processes. Generative AI, a subset of artificial intelligence, has the capability to generate novel ideas, designs, and solutions based on a given set of parameters and objectives. This can revolutionize the way organizations approach enterprise architecture, as it offers the ability to automate and optimize various aspects of the architectural process. In this subchapter, we will delve into the key concepts and principles of generative AI and its relevance to enterprise architecture. We will explore how this technology can be utilized to streamline the design and decision-making process, reduce time and resources, and ultimately enhance the overall effectiveness of an organization's architectural endeavors. Furthermore, we will discuss the various applications and use cases of generative AI in enterprise architecture. From creating intelligent blueprints to generating optimized architectural designs, this technology can assist architects and organizations in making informed decisions and developing innovative solutions. To fully grasp the potential of generative AI in enterprise architecture, it is crucial to understand the challenges and considerations associated with its implementation. We will address the potential limitations and risks of relying solely on generative AI, while also highlighting the importance of human expertise and collaboration in conjunction with this technology. Lastly, in this subchapter, we will provide practical guidance on how organizations can begin incorporating generative AI into their architectural processes. We will outline the steps and best practices required to successfully implement generative AI solutions, while also emphasizing the need for continuous learning and adaptation.













Artificial Intelligence in Banking


Book Description

In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, "In a world focused on using AI in new ways, we're focused on using it wisely and responsibly."




Generative AI Application Integration Patterns


Book Description

Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations. Key Features Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps Interact with GenAI models to tailor model behavior to minimize hallucinations Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications Book Description Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI. With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns. We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought. Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns. What you will learn Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation Patterns for batch and real-time integration Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more Ethical use: bias mitigation, data privacy, and monitoring Deployment and hosting options for GenAI models Who this book is for This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include: Developer engineers with foundational tech knowledge Software architects seeking best practices and design patterns Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI Technical product managers with a software development background This concise focus ensures practical, actionable insights for experienced professionals




Radically Human


Book Description

Technology advances are making tech more . . . human. This changes everything you thought you knew about innovation and strategy. In their groundbreaking book, Human + Machine, Accenture technology leaders Paul R. Daugherty and H. James Wilson showed how leading organizations use the power of human-machine collaboration to transform their processes and their bottom lines. Now, as new AI powered technologies like the metaverse, natural language processing, and digital twins begin to rapidly impact both life and work, those companies and other pioneers across industries are tipping the balance even more strikingly toward the human side with technology-led strategy that is reshaping the very nature of innovation. In Radically Human, Daugherty and Wilson show this profound shift, fast-forwarded by the pandemic, toward more human—and more humane—technology. Artificial intelligence is becoming less artificial and more intelligent. Instead of data-hungry approaches to AI, innovators are pursuing data-efficient approaches that enable machines to learn as humans do. Instead of replacing workers with machines, they're unleashing human expertise to create human-centered AI. In place of lumbering legacy IT systems, they're building cloud-first IT architectures able to continuously adapt to a world of billions of connected devices. And they're pursuing strategies that will take their place alongside classic, winning business formulas like disruptive innovation. These against-the-grain approaches to the basic building blocks of business—Intelligence, Data, Expertise, Architecture, and Strategy (IDEAS)—are transforming competition. Industrial giants and startups alike are drawing on this radically human IDEAS framework to create new business models, optimize post-pandemic approaches to work and talent, rebuild trust with their stakeholders, and show the way toward a sustainable future. With compelling insights and fresh examples from a variety of industries, Radically Human will forever change the way you think about, practice, and win with innovation.




ArchiMate® 3.0.1 Specification


Book Description

The ArchiMate® Specification, an Open Group Standard, defines an open and independent modeling language for Enterprise Architecture that is supported by different tool vendors and consulting firms. The ArchiMate language enables Enterprise Architects to describe, analyze, and visualize the relationships among business domains in an unambiguous way. This book is the official specification of the ArchiMate 3.0.1 modeling language from The Open Group. ArchiMate 3.0.1 is a minor update to ArchiMate 3.0, containing the set of corrections from ArchiMate 3.0 Technical Corrigendum No. 1 (U172). This addresses inconsistencies and errors identified since the publication of Version 3.0 in June 2016. The ArchiMate Specification supports modeling throughout the TOGAF® Architecture Development Method (ADM). New features in Version 3 include elements for modeling the enterprise at a strategic level, such as capability, resource, and outcome. It also includes support to model the physical world of materials and equipment. Furthermore, the consistency and structure of the language have been improved, definitions have been aligned with other standards, and its usability has been enhanced in various other ways. The intended audience is threefold: • Enterprise Architecture practitioners, such as architects (e.g., business, application, information, process, infrastructure, and, obviously, enterprise architects), senior and operational management, project leaders, and anyone committed to work within the reference framework defined by the Enterprise Architecture. • Those who intend to implement the ArchiMate language in a software tool; they will find a complete and detailed description of the language in this book. • The academic community, on which we rely for amending and improving the language, based on state-of-the-art research results in the Enterprise Architecture field.




Architectural Intelligence


Book Description

This book presents selected papers from The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019). Focusing on novel architecture theories, tools, methods, and procedures for digital design and construction in architecture, it promotes dialogs between architecture, engineer, computer science, robotics, and other relevant disciplines to establish a new way of production in the building industry in the digital age. The contents make valuable contributions to academic researchers and engineers in the industry. At the same time, it offers readers new ideas for the application of digital technology.




DAMA-DMBOK


Book Description

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.