Fundamentals of Gas-Surface Interactions


Book Description

Fundamentals of Gas–Surface Interactions presents the study of the surface itself and the study of the gas phase partner of the interaction in which physical or chemical transformation of the gas resulted from that interaction. This book discusses the study of the energy and momentum exchanges resulting from the gas–solid physical interaction in which either gas or solid phase properties can be measured. Organized into three parts encompassing 33 chapters, this book begins with an overview of the different sensitive physical methods for the study of surface topography, surface defects, and surface irregularities to an accuracy of a few Angstroms. This text then reviews the adsorption at very low coverage that has yielded to equilibrium analysis. Other chapters consider the measurement of surface area by adsorption and optical techniques. The final chapter deals with scattering processes including momentum and energy transfer. This book is a valuable resource for engineers.




Adsorption of Gases on Heterogeneous Surfaces


Book Description

All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed. Adsorption isotherm equations for various types of heterogeneous solid surfaces Methods of determining the nature of surface heterogeneity and porosity from experimental data Studies of phase behavior of gases absorbed on heterogeneous solid surfaces Computer simulation of adsorption on heterogeneous solid surfaces




Interaction of Gases with Surfaces


Book Description

Interface phenomena are most fascinating because of the mixing of different scales and the interference of diverse physical processes. This makes it necessary to use different levels of description: microscopic, kinetic, and gas-dynamical. A unified quasiclassical approach is used to answer practical questions dealing with inelastic gas-surface scattering, the kinetics of adsorption layers, the evolution of inhomogeneities and defects at the surface, the Knudsen layer, the development of boundary conditions on the kinetic and gas-dynamical levels, the determination of exchange and slip coefficients, and so on.