An Introduction To Quantum Field Theory


Book Description

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.










No-Nonsense Quantum Field Theory


Book Description

Learning quantum field theory doesn’t have to be hard What if there were a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that No-Nonsense Quantum Field Theory now exists. What will you learn from this book? Get to know all fundamental concepts — Grasp what a quantum field is, why we use propagators to describe its behavior, and how Feynman diagrams help us to make sense of field interactions. Learn to describe quantum field theory mathematically — Understand the meaning and origin of the most important equations: the Klein-Gordon equation, the Dirac equation, the Proca equation, the Maxwell equations, and the canonical commutation/anticommutation relations. Master important quantum field theory interactions — Read fully annotated, step-by-step calculations and understand the general algorithm we use to particle interactions. Get an understanding you can be proud of —Learn about advanced topics like renormalization and regularization, spontaneous symmetry breaking, the renormalization group equations, non-perturbative phenomena, and effective field models. No-Nonsense Quantum Field Theory is one the most student-friendly book on quantum field theory ever written. Here’s why. First of all, it's nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”. Each chapter, each section, and each page focuses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each equation comes from. The book ruthlessly focuses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually. In each chapter, you’ll find fully annotated equations and calculations are done carefully step-by-step. This makes it much easier to understand what’s going on. Whenever a concept is used that was already introduced previously there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, there are summaries at the beginning of each chapter that make sure you won’t get lost.













Physics Briefs


Book Description




Fields and Particles


Book Description

This volume contains the written versions of invited lectures presented at the 29th "Internationale Universitatswochen fiir Kernphysik" in Schladming, Aus tria, in March 1990. The generous support of our sponsors, the Austrian Ministry of Science and Research, the Government of Styria, and others, made it possible to invite expert lecturers. In choosing the topics of the course we have tried to select some of the currently most fiercely debated aspects of quantum field theory. It is a pleasure for us to thank all the speakers for their excellent presentations and their efforts in preparing the lecture notes. After the school the lecture notes were revised by the authors and partly rewritten ~n '!EX. We are also indebted to Mrs. Neuhold for the careful typing of those notes which we did not receive in '!EX. Graz, Austria H. Mitter July 1990 W. Schweiger Contents An Introduction to Integrable Models and Conformal Field Theory By H. Grosse (With 6 Figures) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 1. Introduction ............................................. . 1 1.1 Continuous Integrable Models .......................... . 1 1.2 "Solvable" Models of Statistical Physics ................. . 2 1.3 The Yang-Baxter Relation ............................. . 3 1.4 Braids and I(nots .................................... . 3 1.5 Confonnal Field Theory d = 2 ......................... . 3 2. Integrable Continuum Models - The Inverse Scattering Method - Solitons .................... . 4 2.1 A General Scheme for Solving (Linear) Problems ......... . 4 2.2 The Direct Step ...................................... . 6 2.3 The Inverse Step ..................................... .




Quantum Field Theory


Book Description

Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.