The Interaction of Ocean Waves and Wind


Book Description

This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.




Wind Generated Ocean Waves


Book Description

The goals of wind wave research are relatively well defined: to be able to predict the wind wave field and its effect on the environment. That environment could be natural (beaches, the atmosphere etc.) or imposed by human endeavour (ports, harbours, coastal settlements etc.). Although the goals are similar, the specific requirements of these various fields differ considerably. This book attempts to summarise the current state of this knowledge and to place this understanding into a common frame work. It attempts to take a balanced approach between the pragmatic engineering view of requiring a short term result and the scientific quest for detailed understanding. Thus, it attempts to provide a rigorous description of the physical processes involved as well as practical predictive tools.




Wind-Waves in Oceans


Book Description

The study of sea waves has always been in the focus of mankind's atten tion. This is attributed not only to a desire to understand the behaviour in seas and oceans, but also, it has some practical necessity. Developing up-to date wind wave numerical methods requires detailed mathematical modelling, starting with wave generation, development, propagation and transformation on the surface in different water areas under quasi-stationary conditions, up to a synthesis of climatic features observed under different wave generation conditions in oceans, sea or coastal areas. The present monograph considers wind waves in terms of the most general formulation of the problem as a probable hydrodynamic process with wide spatial variability. It ranges between the global scale of the oceans, whose typical size is comparable with the Earth's radius, to the regional and local scales of the seas, including water areas limited in space with significant current or depth gradients in coastal zones, where waves cease their existence having propagated tens of thousand miles.




Ocean Wave Dynamics


Book Description

Ocean Wave Dynamics is the most up-to-date book of its kind on the three main processes responsible for the generation and evolution of ocean waves: (i) atmospheric input from the wind, (ii) wave breaking and (iii) nonlinear interactions.Ocean waves are important for many reasons. They are the major environmental impact on in the design of coastal or offshore structures. Ocean waves are also fundamental to the processes of coastal flooding and beach erosion. They will play a major role in storm related coastal flooding which will rise in frequency as a result of sea level rise. Ocean waves are also an important part of the coupled ocean-atmosphere system. They determine the roughness of the ocean surface and hence have an impact on winds, fluxes of energy, gases and heat to the ocean and even the stability of ice sheets.Containing the latest research on ocean waves, it is a valuable resource for an overview of knowledge in this important field.Related Link(s)




Ocean Waves and Oscillating Systems


Book Description

Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.




Nonlinear Ocean Dynamics


Book Description

Nonlinear Ocean Dynamics: Synthetic Aperture Radar delivers the critical tools needed to understand the latest technology surrounding the radar imaging of nonlinear waves, particularly microwave radar, as a main source to understand, analyze and apply concepts in the field of ocean dynamic surface. Filling the gap between modern physics quantum theory and applications of radar imaging of ocean dynamic surface, this reference is packed with technical details associated with the potentiality of synthetic aperture radar (SAR). The book also includes key methods needed to extract the value-added information necessary, such as wave spectra energy, current pattern velocity, internal waves, and more. This book also reveals novel speculation of a shallow coastal front: named as Quantized Marghany's Front. Rounding out with practical simulations of 4-D wave-current interaction patterns using using radar images, the book brings an effective new source of technology and applications for today’s coastal scientists and engineers. Solves specific problems surrounding the nonlinearity of ocean surface dynamics in synthetic aperture radar data Helps develop new algorithms for retrieving ocean wave spectra and ocean current movements from synthetic aperture radar Includes over 100 equations that illustrate how to follow examples in the book




Wind Waves at Se


Book Description

Hydrographic Office Publication, No. 609.




Ocean Waves Breaking and Marine Aerosol Fluxes


Book Description

This book fills a gap in knowledge of breaking waves and their influence on the generation of marine fluxes from ocean surfaces. Based on published data as well as on the author's experience, the text explores in detail the relationship chain of breaking waves, whitecaps coverage, rate of wave energy dissipation, amount of aerosol fluxes rising from a given sea basin, and possible seasonal variations.




Wind Waves


Book Description

In this classic study, a renowned student of ocean wave theory examines the data requirements and details of the power spectral analysis required to make the wave revolution intelligible. Although the discussions center on waves, once the techniques are understood, they can be applied to many other areas. After outlining the nature of waves and wave processes and their methods of measurement and classification, the author provides a detailed exploration that relies heavily on mathematical models. Topics include perturbations of irrotational motion, energy considerations, wave generations by wind, and much more. The text is enhanced and clarified by 270 photos, figures, and tables. A helpful bibliography and indexes conclude this indispensable addition to the oceanographer's library.




Breaking and Dissipation of Ocean Surface Waves


Book Description

Wave breaking represents one of the most interesting and challenging problems for fluid mechanics and physical oceanography. Over the last fifteen years our understanding has undergone a dramatic leap forward, and wave breaking has emerged as a process whose physics is clarified and quantified. Ocean wave breaking plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and ocean engineering, navigation and other practical applications. This book outlines the state of the art in our understanding of wave breaking and presents the main outstanding problems. It is a valuable resource for anyone interested in this topic, including researchers, modellers, forecasters, engineers and graduate students in physical oceanography, meteorology and ocean engineering.