Handbook of Ion Channels


Book Description

The New Benchmark for Understanding the Latest Developments of Ion ChannelsIon channels control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli, and regulate the response to physical stimuli. They can often interact with the cellular environment due to their location at the surface of ce




Ion Channels and Disease


Book Description

Ion channels are membrane proteins that act as gated pathways for the movement of ions across cell membranes. They play essential roles in the physiology of all cells. In recent years, an ever-increasing number of human and animal diseases have been found to result from defects in ion channel function. Most of these diseases arise from mutations in the genes encoding ion channel proteins, and they are now referred to as the channelopathies. Ion Channels and Disease provides an informative and up-to-date account of our present understanding of ion channels and the molecular basis of ion channel diseases. It includes a basic introduction to the relevant aspects of molecular biology and biophysics and a brief description of the principal methods used to study channelopathies. For each channel, the relationship between its molecular structure and its functional properties is discussed and ways in which genetic mutations produce the disease phenotype are considered. This book is intended for research workers and clinicians, as well as graduates and advanced undergraduates. The text is clear and lively and assumes little knowledge, yet it takes the reader to frontiers of what is currently known about this most exciting and medically important area of physiology. Introduces the relevant aspects of molecular biology and biophysics Describes the principal methods used to study channelopathies Considers single classes of ion channels with summaries of the physiological role, subunit composition, molecular structure and chromosomal location, plus the relationship between channel structure and function Looks at those diseases associated with defective channel structures and regulation, including mutations affecting channel function and to what extent this change in channel function can account for the clinical phenotype




Ion Channels


Book Description

This Methods in Molecular Biology book offers strategies and protocols for studying a large group of proteins that form ionic channels in the plasma membrane and intracellular membranes of cells. Includes step-by-step protocols, materials lists, tips and more."




Ion Channel Factsbook


Book Description

How do you keep track of basic information on the proteins you work with? Where do you find details of their physicochemical properties, sequence information, gene organization? Are you tired of scanning review articles, primary papers and databases to locate that elusive fact? The Academic Press FactsBook series will satisfy scientists and clinical researchers suffering from information overload. Each volume provides a catalogue of the essential properties of families of molecules. Gene organization, sequence information, physicochemical properties, and biological activity are presented using a common, easy to follow format. Taken together they compile everything you wanted to know about proteins but were too busy to look for.In a set of four inter-related volumes, The Ion Channel FactsBook provides a comprehensive framework of facts about channel molecules central to electrical signalling phenomena in living cells. The first volume is devoted to Extracellular Ligand-Gated Integral Receptor-Channel Families including those molecular complexes activated by: 5-Hydroxytryptamine, ATP, Glutamate, Acetylcholine, GABA, Glycine. Nomenclature Expression Sequence analyses Structure and function Electrophysiology Pharmacology Information retrieval







Ion Channel Reconstitution


Book Description

It is now over 30 years since the idea of ion-conducting pores burst on the elec trophysiological scene, 15 years since these were generalIy realized to be mem brane-spanning proteins, and 10 years since the first observations of single ion channels from higher organisms were made. During the past 5 years, several integral membrane channel proteins have been purified in a functionalIy competent state: the nicotinic acetylcholine receptor, the Na + channel, mitochondrial "VDAC," and a variety of porins. The stage is thus set to attack ion channels in the same ways that biochemists have been attacking enzymes for decades: isolation folIowed by functional analysis in as simple a system as possible, with a view towards understanding the molecular mechanisms ofthe protein's behavior and how this is related to the underlying molecular structure. This is always a daunting task, alI the more so with ion channels because of our still primitive and scanty understanding of channel structures and because of the difficulty in iso lating functionally active channel proteins. In this volume, which can be considered a biochemically slanted companion to Sakmann and Neher's Single-Channel Recording, I have tried to present a view of the current landscape of ion-channel reconstitution. These chapters illustrate not only the different approaches and techniques of the major practitioners of ion channel reconstitution but, as importantly, the varied motivations for doing this kind of work.




TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades


Book Description

Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st




Ion Channels


Book Description

Ion channels are crucial components of living cells. Situated in the cell's membranes. they allow particular ions to pass from one side of the membrane to the other. In recent years the patch clamp technique has allowed the activity of individual channels to be measured, and recombinant DNA technology has led to fascinating detail on their structure. Together, these technical advances have produced a great flowering of knowledge and understanding about the subject, itself leading to further breakthroughs in science and medicine. Ion Channels provides an introduction to this scientific endeavour. It emphasises the molecular structure of channels as determined by gene cloning technology. This knowledge illuminates discussions of the permeability and selectivity of channels, their gating and modulation, their responses to drugs and toxins and the human diseases caused when they do not function properly.




Receptor and Ion Channel Detection in the Brain


Book Description

Receptor and Ion Channel Detection in the Brain provides state-of-the-art and up-to-date methodological information on molecular, neuroanatomical and functional techniques that are currently used to study neurotransmitter receptors and ion channels in the brain. The chapters have been contributed by world-wide recognized neuroscientists who explain in an easy and detailed way well established and tested protocols embracing molecular, cellular, subcellular, anatomical and electrophysiological aspects of the brain. This comprehensive and practical manual is presented in a simple, step-by-step manner for laboratory use, and also offers unambiguous detail and key implementation advice that proves essential for successful results and facilitate choosing the best method for the target proteins under study. This work serves as a useful guide for young researchers and students in training as well as for neurologists and established scientists who wish to extend their repertoire of techniques.




Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models


Book Description

Flow of ions through voltage gated channels can be represented theoretically using stochastic differential equations where the gating mechanism is represented by a Markov model. The flow through a channel can be manipulated using various drugs, and the effect of a given drug can be reflected by changing the Markov model. These lecture notes provide an accessible introduction to the mathematical methods needed to deal with these models. They emphasize the use of numerical methods and provide sufficient details for the reader to implement the models and thereby study the effect of various drugs. Examples in the text include stochastic calcium release from internal storage systems in cells, as well as stochastic models of the transmembrane potential. Well known Markov models are studied and a systematic approach to including the effect of mutations is presented. Lastly, the book shows how to derive the optimal properties of a theoretical model of a drug for a given mutation defined in terms of a Markov model.