The Lanczos Method


Book Description

The Lanczos Method: Evolution and Application is divided into two distinct parts. The first part reviews the evolution of one of the most widely used numerical techniques in the industry. The development of the method, as it became more robust, is demonstrated through easy-to-understand algorithms. The second part contains industrial applications drawn from the author's experience. These chapters provide a unique interaction between the numerical algorithms and their engineering applications.




The Lanczos and Conjugate Gradient Algorithms


Book Description

The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.




The Lanczos Method


Book Description

A valuable reference on the Lanczos method for graduate numerical analysts and engineers.




Sparse Matrix Computations


Book Description

Sparse Matrix Computations is a collection of papers presented at the 1975 Symposium by the same title, held at Argonne National Laboratory. This book is composed of six parts encompassing 27 chapters that contain contributions in several areas of matrix computations and some of the most potential research in numerical linear algebra. The papers are organized into general categories that deal, respectively, with sparse elimination, sparse eigenvalue calculations, optimization, mathematical software for sparse matrix computations, partial differential equations, and applications involving sparse matrix technology. This text presents research on applied numerical analysis but with considerable influence from computer science. In particular, most of the papers deal with the design, analysis, implementation, and application of computer algorithms. Such an emphasis includes the establishment of space and time complexity bounds and to understand the algorithms and the computing environment. This book will prove useful to mathematicians and computer scientists.




Numerical Methods for Large Eigenvalue Problems


Book Description

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.







Parallel Numerical Algorithms


Book Description

In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.




Rounding Errors in Algebraic Processes


Book Description

"[This book] combines a rigorous mathematical analysis with a practicality that stems from an obvious first-hand contact with the actual numerical computation. The well-chosen examples alone show vividly both the importance of the study of rounding errors and the perils of its neglect." A. A. Grau, SIAM Review (1966) Rounding Errors in Algebraic Processes was the first book to give systematic analyses of the effects of rounding errors on a variety of key computations involving polynomials and matrices. A detailed analysis is given of the rounding errors made in the elementary arithmetic operations and inner products, for both floating-point arithmetic and fixed-point arithmetic. The results are then applied in the error analyses of a variety of computations involving polynomials as well as the solution of linear systems, matrix inversion, and eigenvalue computations. The conditioning of these problems is investigated. The aim was to provide a unified method of treatment, and emphasis is placed on the underlying concepts. This book is intended for mathematicians, computer scientists, those interested in the historical development of numerical analysis, and students in numerical analysis and numerical linear algebra.




The Symmetric Eigenvalue Problem


Book Description

According to Parlett, "Vibrations are everywhere, and so too are the eigenvalues associated with them. As mathematical models invade more and more disciplines, we can anticipate a demand for eigenvalue calculations in an ever richer variety of contexts." Anyone who performs these calculations will welcome the reprinting of Parlett's book (originally published in 1980). In this unabridged, amended version, Parlett covers aspects of the problem that are not easily found elsewhere. The chapter titles convey the scope of the material succinctly. The aim of the book is to present mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few. The author explains why the selected information really matters and he is not shy about making judgments. The commentary is lively but the proofs are terse. The first nine chapters are based on a matrix on which it is possible to make similarity transformations explicitly. The only source of error is inexact arithmetic. The last five chapters turn to large sparse matrices and the task of making approximations and judging them.