The Leverage Space Trading Model


Book Description

An innovative approach to trading by an expert in the field. In The Leverage Space Trading Model, quantitative portfolio analysis expert Ralph Vince takes the Leverage Space Model he presented in The Handbook of Portfolio Mathematics and brings it into entirely new territory. As Vince shows here, even if a trader doesn't use margin, he or she is still using leverage. Leverage refers to the schedule upon which an asset position is increased or decreased over time as an equity account fluctuates. Traditional models do not reflect real-world actualities of cash versus the position and the schedul.




Design, Testing, and Optimization of Trading Systems


Book Description

The title says it all. Concise, straight to the point guidance on developing a winning computer trading system. Copyright © Libri GmbH. All rights reserved.




The Mathematics of Money Management


Book Description

Every futures, options, and stock markets trader operates under a set of highly suspect rules and assumptions. Are you risking your career on yours? Exceptionally clear and easy to use, The Mathematics of Money Management substitutes precise mathematical modeling for the subjective decision-making processes many traders and serious investors depend on. Step-by-step, it unveils powerful strategies for creating and using key money management formulas--based on the rules of probability and modern portfolio theory--that maximizes the potential gains for the level of risk you are assuming. With them, you'll determine the payoffs and consequences of any potential trading decision and obtain the highest potential growth for your specified level of risk. You'll quickly decide: What markets to trade in and at what quantities When to add or subtract funds from an account How to reinvest trading profits for maximum yield The Mathematics of Money Management provides the missing element in modern portfolio theory that weds optimal f to the optimal portfolio.




Machine Learning for Algorithmic Trading


Book Description

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.




Neural Networks in Finance


Book Description

This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website




Trading on Sentiment


Book Description

In his debut book on trading psychology, Inside the Investor’s Brain, Richard Peterson demonstrated how managing emotions helps top investors outperform. Now, in Trading on Sentiment, he takes you inside the science of crowd psychology and demonstrates that not only do price patterns exist, but the most predictable ones are rooted in our shared human nature. Peterson’s team developed text analysis engines to mine data - topics, beliefs, and emotions - from social media. Based on that data, they put together a market-neutral social media-based hedge fund that beat the S&P 500 by more than twenty-four percent—through the 2008 financial crisis. In this groundbreaking guide, he shows you how they did it and why it worked. Applying algorithms to social media data opened up an unprecedented world of insight into the elusive patterns of investor sentiment driving repeating market moves. Inside, you gain a privileged look at the media content that moves investors, along with time-tested techniques to make the smart moves—even when it doesn’t feel right. This book digs underneath technicals and fundamentals to explain the primary mover of market prices - the global information flow and how investors react to it. It provides the expert guidance you need to develop a competitive edge, manage risk, and overcome our sometimes-flawed human nature. Learn how traders are using sentiment analysis and statistical tools to extract value from media data in order to: Foresee important price moves using an understanding of how investors process news. Make more profitable investment decisions by identifying when prices are trending, when trends are turning, and when sharp market moves are likely to reverse. Use media sentiment to improve value and momentum investing returns. Avoid the pitfalls of unique price patterns found in commodities, currencies, and during speculative bubbles Trading on Sentiment deepens your understanding of markets and supplies you with the tools and techniques to beat global markets— whether they’re going up, down, or sideways.




Handbook of European Financial Markets and Institutions


Book Description

Written by leading academics and practitioners, this book provides an overview of financial markets and addresses major policy issues using the most advanced tools of theoretical and empirical economic analysis. In particular, the book focuses on financial integration and the structural reforms now taking place in the European financial sector.




Rocket Science for Traders


Book Description

Predict the future more accurately in today's difficult trading times The Holy Grail of trading is knowing what the markets will do next. Technical analysis is the art of predicting the market based on tested systems. Some systems work well when markets are "trending," and some work well when they are "cycling," going neither up nor down, but sideways. In Trading with Signal Analysis, noted technical analyst John Ehlers applies his engineering expertise to develop techniques that predict the future more accurately in these times that are otherwise so difficult to trade. Since cycles and trends exist in every time horizon, these methods are useful even in the strongest bull--or bear--market. John F. Ehlers (Goleta, CA) speaks internationally on the subject of cycles in the market and has expanded the scope of his contributions to technical analysis through the application of scientific digital signal processing techniques.




Cycle Analytics for Traders, + Downloadable Software


Book Description

A technical resource for self-directed traders who want to understand the scientific underpinnings of the filters and indicators used in trading decisions This is a technical resource book written for self-directed traders who want to understand the scientific underpinnings of the filters and indicators they use in their trading decisions. There is plenty of theory and years of research behind the unique solutions provided in this book, but the emphasis is on simplicity rather than mathematical purity. In particular, the solutions use a pragmatic approach to attain effective trading results. Cycle Analytics for Traders will allow traders to think of their indicators and trading strategies in the frequency domain as well as their motions in the time domain. This new viewpoint will enable them to select the most efficient filter lengths for the job at hand. Shows an awareness of Spectral Dilation, and how to eliminate it or to use it to your advantage Discusses how to use Automatic Gain Control (AGC) to normalize indicator amplitude swings Explains thinking of prices in the frequency domain as well as in the time domain Creates an awareness that all indicators are statistical rather than absolute, as implied by their single line displays Sheds light on several advanced cookbook filters Showcases new advanced indicators like the Even Better Sinewave and Decycler Indicators Explains how to use transforms to improve the display and interpretation of indicators




Portfolio Risk Analysis


Book Description

Portfolio risk forecasting has been and continues to be an active research field for both academics and practitioners. Almost all institutional investment management firms use quantitative models for their portfolio forecasting, and researchers have explored models' econometric foundations, relative performance, and implications for capital market behavior and asset pricing equilibrium. Portfolio Risk Analysis provides an insightful and thorough overview of financial risk modeling, with an emphasis on practical applications, empirical reality, and historical perspective. Beginning with mean-variance analysis and the capital asset pricing model, the authors give a comprehensive and detailed account of factor models, which are the key to successful risk analysis in every economic climate. Topics range from the relative merits of fundamental, statistical, and macroeconomic models, to GARCH and other time series models, to the properties of the VIX volatility index. The book covers both mainstream and alternative asset classes, and includes in-depth treatments of model integration and evaluation. Credit and liquidity risk and the uncertainty of extreme events are examined in an intuitive and rigorous way. An extensive literature review accompanies each topic. The authors complement basic modeling techniques with references to applications, empirical studies, and advanced mathematical texts. This book is essential for financial practitioners, researchers, scholars, and students who want to understand the nature of financial markets or work toward improving them.