The Little Book of Black Holes


Book Description

Dive into a mind-bending exploration of the physics of black holes Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality—a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research—and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction. After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical “laboratories” in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories’ detection of the distinctive gravitational wave “chirp” of two colliding black holes—the first direct observation of black holes’ existence. The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.




The Little Book of Black Holes


Book Description

Dive into a mind-bending exploration of the physics of black holes Black holes, predicted by Albert Einstein’s general theory of relativity more than a century ago, have long intrigued scientists and the public with their bizarre and fantastical properties. Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality—a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research—and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction. After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical “laboratories” in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories’ detection of the distinctive gravitational wave “chirp” of two colliding black holes—the first direct observation of black holes’ existence. The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.




The Little Book of String Theory


Book Description

The essential beginner's guide to string theory The Little Book of String Theory offers a short, accessible, and entertaining introduction to one of the most talked-about areas of physics today. String theory has been called the "theory of everything." It seeks to describe all the fundamental forces of nature. It encompasses gravity and quantum mechanics in one unifying theory. But it is unproven and fraught with controversy. After reading this book, you'll be able to draw your own conclusions about string theory. Steve Gubser begins by explaining Einstein's famous equation E = mc2, quantum mechanics, and black holes. He then gives readers a crash course in string theory and the core ideas behind it. In plain English and with a minimum of mathematics, Gubser covers strings, branes, string dualities, extra dimensions, curved spacetime, quantum fluctuations, symmetry, and supersymmetry. He describes efforts to link string theory to experimental physics and uses analogies that nonscientists can understand. How does Chopin's Fantasie-Impromptu relate to quantum mechanics? What would it be like to fall into a black hole? Why is dancing a waltz similar to contemplating a string duality? Find out in the pages of this book. The Little Book of String Theory is the essential, most up-to-date beginner's guide to this elegant, multidimensional field of physics.




There Was a Black Hole that Swallowed the Universe


Book Description

Spark your child's imagination through science and learning with this captivating astronomy book for toddlers. When it comes to kids books about black holes nothing else can compare to this clever science parody from the #1 science author for kids, Chris Ferrie! PLUS, use a black light to reveal secret, invisible text and artwork that reverses the story from nothing to the scientific creation of everything! Using the familiar rhythm of "There Was an Old Lady Who Swallowed a Fly," follow along as the black hole swallows up the universe and everything that exists in it, from the biggest to the smallest pieces of matter. The silly, vibrant artwork is sure to make stargazers of all ages smile and start a love of science in your baby. There was a black hole that swallowed the universe. I don't know why it swallowed the universe—oh well, it couldn't get worse. There was a black hole that swallowed a galaxy. It left quite a cavity after swallowing that galaxy. It swallowed the galaxies that filled universe. I don't know why it swallowed the universe—oh well, it couldn't get worse.




The Little Book of Cosmology


Book Description

The cutting-edge science that is taking the measure of the universe The Little Book of Cosmology provides a breathtaking look at our universe on the grandest scales imaginable. Written by one of the world's leading experimental cosmologists, this short but deeply insightful book describes what scientists are revealing through precise measurements of the faint thermal afterglow of the Big Bang—known as the cosmic microwave background, or CMB—and how their findings are transforming our view of the cosmos. Blending the latest findings in cosmology with essential concepts from physics, Lyman Page first helps readers to grasp the sheer enormity of the universe, explaining how to understand the history of its formation and evolution in space and time. Then he sheds light on how spatial variations in the CMB formed, how they reveal the age, size, and geometry of the universe, and how they offer a blueprint for the formation of cosmic structure. Not only does Page explain current observations and measurements, he describes how they can be woven together into a unified picture to form the Standard Model of Cosmology. Yet much remains unknown, and this incisive book also describes the search for ever deeper knowledge at the field's frontiers—from quests to understand the nature of neutrinos and dark energy to investigations into the physics of the very early universe.




Black Hole Astrophysics


Book Description

As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spectacular outfl ows (winds and jets) generated by black hole accretion.




Black Holes: The Reith Lectures


Book Description

“It is said that fact is sometimes stranger than fiction, and nowhere is that more true than in the case of black holes. Black holes are stranger than anything dreamed up by science fiction writers.” In 2016 Professor Stephen Hawking delivered the BBC Reith Lectures on a subject that fascinated him for decades – black holes. In these flagship lectures the legendary physicist argued that if we could only understand black holes and how they challenge the very nature of space and time, we could unlock the secrets of the universe.




Black Holes


Book Description

A pedagogical introduction to the physics of black holes. The membrane paradigm represents the four-dimensional spacetime of the black hole's "event horizon" as a two-dimensional membrane in three-dimensional space, allowing the reader to understand and compute the behavior of black holes in complex astrophysical environments.




A Black Hole Is Not a Hole


Book Description

Budding astronomers and scientists will love this humorous introduction to the extremely complex concept of black holes. With space facts and answers about the galaxies (ours, and others) A Black Hole is NOT a Hole takes readers on a ride that will stretch their minds around the phenomenon known as a black hole. In lively and text, the book starts off with a thorough explanation of gravity and the role it plays in the formation of black holes. Paintings by Michael Carroll, coupled with real telescopic images, help readers visualize the facts and ideas presented in the text, such as how light bends, and what a supernova looks like. Back matter includes a timeline which sums up important findings discussed throughout, while the glossary and index provide a quick point of reference for readers. Children and adults alike will learn a ton of spacey facts in this far-out book that’s sure to excite even the youngest of astrophiles.




Black Hole Survival Guide


Book Description

From the acclaimed author of Black Hole Blues and Other Songs from Outer Space—an authoritative and accessible guide to the most alluring and challenging phenomena of contemporary science. "[Levin will] take you on a safe black hole trip, an exciting travel story enjoyed from your chair’s event horizon.” —Boston Globe Through her writing, astrophysicist Janna Levin has focused on making the science she studies not just comprehensible but also, and perhaps more important, intriguing to the nonscientist. In this book, she helps us to understand and find delight in the black hole—perhaps the most opaque theoretical construct ever imagined by physicists—illustrated with original artwork by American painter and photographer Lia Halloran. Levin takes us on an evocative exploration of black holes, provoking us to imagine the visceral experience of a black hole encounter. She reveals the influence of black holes as they populate the universe, sculpt galaxies, and even infuse the whole expanse of reality that we inhabit. Lively, engaging, and utterly unique, Black Hole Survival Guide is not just informative—it is, as well, a wonderful read from first to last.