The Local Structure of Finite Groups of Characteristic 2 Type


Book Description

Studies the generic finite simple group of characteristic 2 type whose proper subgroups are of known type. The authors' principal result (the Trichotomy Theorem) asserts that such a group has one of three precisely determined internal structures.







The Classification of the Finite Simple Groups, Number 2


Book Description

The second volume of a series devoted to reorganizing and simplifying proof of the classification of the finite simple groups. In a single chapter, it lays the groundwork for the forthcoming analysis of finite simple groups, beginning with the theory of components, layers, and the generalized Fitting subgroup, which has been developed largely since Gorenstein's basic 1968 text and is now central to understanding the structure of finite groups. Suitable as an auxiliary text for a graduate course in group theory. Member prices are $35 for individual and $47 for institutions. Annotation copyright by Book News, Inc., Portland, OR




The Classification of Finite Simple Groups


Book Description

Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.




Finite and Locally Finite Groups


Book Description

This volume contains the proceedings of the NATO Advanced Study Institute on Finite and Locally Finite Groups held in Istanbul, Turkey, 14-27 August 1994, at which there were about 90 participants from some 16 different countries. The ASI received generous financial support from the Scientific Affairs Division of NATO. INTRODUCTION A locally finite group is a group in which every finite set of elements is contained in a finite subgroup. The study of locally finite groups began with Schur's result that a periodic linear group is, in fact, locally finite. The simple locally finite groups are of particular interest. In view of the classification of the finite simple groups and advances in representation theory, it is natural to pursue classification theorems for simple locally finite groups. This was one of the central themes of the Istanbul conference and significant progress is reported herein. The theory of simple locally finite groups intersects many areas of group theory and representation theory, so this served as a focus for several articles in the volume. Every simple locally finite group has what is known as a Kegel cover. This is a collection of pairs {(G , Ni) liE I}, where I is an index set, each group Gi is finite, i Ni




The Classification of the Finite Simple Groups


Book Description

The classification of the finite simple groups is one of the major feats of contemporary mathematical research, but its proof has never been completely extricated from the journal literature in which it first appeared. This book serves as an introduction to a series devoted to organizing and simplifying the proof. The purpose of the series is to present as direct and coherent a proof as is possible with existing techniques. This first volume, which sets up the structure for the entire series, begins with largely informal discussions of the relationship between the Classification Theorem and the general structure of finite groups, as well as the general strategy to be followed in the series and a comparison with the original proof. Also listed are background results from the literature that will be used in subsequent volumes. Next, the authors formally present the structure of the proof and the plan for the series of volumes in the form of two grids, giving the main case division of the proof as well as the principal milestones in the analysis of each case. Thumbnail sketches are given of the ten or so principal methods underlying the proof. Much of the book is written in an expository style accessible to nonspecialists.







The Classification of the Finite Simple Groups, Number 3


Book Description

Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR




Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type


Book Description

For a finite group G of Lie type and a prime p, the authors compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p in terms of Out(G).




Equivalences of Classifying Spaces Completed at the Prime Two


Book Description

We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.