The Many Facets of Geometry


Book Description

This title celebrates the academic career of Professor Nigel Hitchin - one of the most influential figures in the field of differential and algebraic geometry.




The Many Facets of Mathematics


Book Description

The primary objective of this book is to provide you with the opportunity to gain insight into the nature of mathematics by exploring some of the many facets of mathematics.





Book Description




Lectures on Symplectic Geometry


Book Description

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.




Viewpoints


Book Description

An undergraduate textbook devoted exclusively to relationships between mathematics and art, Viewpoints is ideally suited for math-for-liberal-arts courses and mathematics courses for fine arts majors. The textbook contains a wide variety of classroom-tested activities and problems, a series of essays by contemporary artists written especially for the book, and a plethora of pedagogical and learning opportunities for instructors and students. Viewpoints focuses on two mathematical areas: perspective related to drawing man-made forms and fractal geometry related to drawing natural forms. Investigating facets of the three-dimensional world in order to understand mathematical concepts behind the art, the textbook explores art topics including comic, anamorphic, and classical art, as well as photography, while presenting such mathematical ideas as proportion, ratio, self-similarity, exponents, and logarithms. Straightforward problems and rewarding solutions empower students to make accurate, sophisticated drawings. Personal essays and short biographies by contemporary artists are interspersed between chapters and are accompanied by images of their work. These fine artists--who include mathematicians and scientists--examine how mathematics influences their art. Accessible to students of all levels, Viewpoints encourages experimentation and collaboration, and captures the essence of artistic and mathematical creation and discovery. Classroom-tested activities and problem solving Accessible problems that move beyond regular art school curriculum Multiple solutions of varying difficulty and applicability Appropriate for students of all mathematics and art levels Original and exclusive essays by contemporary artists Forthcoming: Instructor's manual (available only to teachers)




Handbook of Discrete and Computational Geometry


Book Description

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.




Geometric Combinatorics


Book Description

Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.




Geometry


Book Description

Mathematics is more important than ever, but phrases like "math avoidance" and "math anxiety" are very much in the public vocabulary. In addition to providing an invitation to mathematics in general, this book emphasizes the dynamic character of geometry and its role as part of the foundation for our cultural heritage. Aimed at an informed public and future teachers of mathematics, it seeks to heal the ills of math phobia in society.




STEMathematics: Exercises in Applied Computation and Modeling (Volume 1)


Book Description

STEMathematics is an instructional resource designed primarily for secondary level mathematics teachers and students interested in discovering how mathematics describes (and is applied to) our natural world. This resource provides both the historical elements and the technical aspects of various topics in mathematics that provide instructional context in the sciences, technology, and engineering, (STEM) disciplines. The purpose of STEMathematics is to help teachers become more personally interested in the topics they teach and to gain a broader perspective of how mathematics can be integrated with other subject disciplines.




Surveys on Discrete and Computational Geometry


Book Description

This volume contains nineteen survey papers describing the state of current research in discrete and computational geometry as well as a set of open problems presented at the 2006 AMS-IMS-SIAM Summer Research Conference Discrete and Computational Geometry--Twenty Years Later, held in Snowbird, Utah, in June 2006. Topics surveyed include metric graph theory, lattice polytopes, the combinatorial complexity of unions of geometric objects, line and pseudoline arrangements, algorithmic semialgebraic geometry, persistent homology, unfolding polyhedra, pseudo-triangulations, nonlinear computational geometry, $k$-sets, and the computational complexity of convex bodies.