The Mathematical Experience, Study Edition


Book Description

Winner of the 1983 National Book Award! "...a perfectly marvelous book about the Queen of Sciences, from which one will get a real feeling for what mathematicians do and who they are. The exposition is clear and full of wit and humor..." - The New Yorker (1983 National Book Award edition) Mathematics has been a human activity for thousands of years. Yet only a few people from the vast population of users are professional mathematicians, who create, teach, foster, and apply it in a variety of situations. The authors of this book believe that it should be possible for these professional mathematicians to explain to non-professionals what they do, what they say they are doing, and why the world should support them at it. They also believe that mathematics should be taught to non-mathematics majors in such a way as to instill an appreciation of the power and beauty of mathematics. Many people from around the world have told the authors that they have done precisely that with the first edition and they have encouraged publication of this revised edition complete with exercises for helping students to demonstrate their understanding. This edition of the book should find a new generation of general readers and students who would like to know what mathematics is all about. It will prove invaluable as a course text for a general mathematics appreciation course, one in which the student can combine an appreciation for the esthetics with some satisfying and revealing applications. The text is ideal for 1) a GE course for Liberal Arts students 2) a Capstone course for perspective teachers 3) a writing course for mathematics teachers. A wealth of customizable online course materials for the book can be obtained from Elena Anne Marchisotto ([email protected]) upon request.




The Mathematical Experience, Study Edition


Book Description

Winner of the 1983 National Book Award! "...a perfectly marvelous book about the Queen of Sciences, from which one will get a real feeling for what mathematicians do and who they are. The exposition is clear and full of wit and humor..." - The New Yorker (1983 National Book Award edition) Mathematics has been a human activity for thousands of years. Yet only a few people from the vast population of users are professional mathematicians, who create, teach, foster, and apply it in a variety of situations. The authors of this book believe that it should be possible for these professional mathematicians to explain to non-professionals what they do, what they say they are doing, and why the world should support them at it. They also believe that mathematics should be taught to non-mathematics majors in such a way as to instill an appreciation of the power and beauty of mathematics. Many people from around the world have told the authors that they have done precisely that with the first edition and they have encouraged publication of this revised edition complete with exercises for helping students to demonstrate their understanding. This edition of the book should find a new generation of general readers and students who would like to know what mathematics is all about. It will prove invaluable as a course text for a general mathematics appreciation course, one in which the student can combine an appreciation for the esthetics with some satisfying and revealing applications. The text is ideal for 1) a GE course for Liberal Arts students 2) a Capstone course for perspective teachers 3) a writing course for mathematics teachers. A wealth of customizable online course materials for the book can be obtained from Elena Anne Marchisotto ([email protected]) upon request.




What Is Mathematics, Really?


Book Description

Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.




Loving and Hating Mathematics


Book Description

An exploration of the hidden human, emotional, and social dimensions of mathematics Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions—and inspire more love and hatred—than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. Loving and Hating Mathematics is about the hidden human, emotional, and social forces that shape mathematics and affect the experiences of students and mathematicians. Written in a lively, accessible style, and filled with gripping stories and anecdotes, Loving and Hating Mathematics brings home the intense pleasures and pains of mathematical life. These stories challenge many myths, including the notions that mathematics is a solitary pursuit and a "young man's game," the belief that mathematicians are emotionally different from other people, and even the idea that to be a great mathematician it helps to be a little bit crazy. Reuben Hersh and Vera John-Steiner tell stories of lives in math from their very beginnings through old age, including accounts of teaching and mentoring, friendships and rivalries, love affairs and marriages, and the experiences of women and minorities in a field that has traditionally been unfriendly to both. Included here are also stories of people for whom mathematics has been an immense solace during times of crisis, war, and even imprisonment—as well as of those rare individuals driven to insanity and even murder by an obsession with math. This is a book for anyone who wants to understand why the most rational of human endeavors is at the same time one of the most emotional.







Proof and the Art of Mathematics


Book Description

How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.




Foundations of Mathematical Analysis


Book Description

Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.




The Young Child and Mathematics, Third Edition


Book Description

Tap into the Power of Child-Led Math Teaching and Learning Everything a child does has mathematical value--these words are at the heart of this completely revised and updated third edition of The Young Child and Mathematics. Grounded in current research, this classic book focuses on how teachers working with children ages 3 to 6 can find and build on the math inherent in children's ideas in ways that are playful and intentional. This resource - Illustrates through detailed vignettes how math concepts can be explored in planned learning experiences as well as informal spaces - Highlights in-the-moment instructional decision-making and child-teacher interactions that meaningfully and dynamically support children in making math connections - Provides an overview of what children know about counting and operations, spatial relations, measurement and data, and patterns and algebra - Offers examples of informal documentation and assessment approaches that are embedded within classroom practice Deepen your understanding of how math is an integral part of your classroom all day, every day. Includes online video!




Mathematics and the Physical World


Book Description

Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.