The Mathematical Representation of Physical Reality


Book Description

This book deals with the rise of mathematics in physical sciences, beginning with Galileo and Newton and extending to the present day. The book is divided into two parts. The first part gives a brief history of how mathematics was introduced into physics--despite its "unreasonable effectiveness" as famously pointed out by a distinguished physicist--and the criticisms it received from earlier thinkers. The second part takes a more philosophical approach and is intended to shed some light on that mysterious effectiveness. For this purpose, the author reviews the debate between classical philosophers on the existence of innate ideas that allow us to understand the world and also the philosophically based arguments for and against the use of mathematics in physical sciences. In this context, Schopenhauer's conceptions of causality and matter are very pertinent, and their validity is revisited in light of modern physics. The final question addressed is whether the effectiveness of mathematics can be explained by its “existence” in an independent platonic realm, as Gödel believed. The book aims at readers interested in the history and philosophy of physics. It is accessible to those with only a very basic (not professional) knowledge of physics.




The Mathematical Representation of Physical Reality


Book Description

​This book deals with the rise of mathematics in physical sciences, beginning with Galileo and Newton and extending to the present day. The book is divided into two parts. The first part gives a brief history of how mathematics was introduced into physics—despite its "unreasonable effectiveness" as famously pointed out by a distinguished physicist—and the criticisms it received from earlier thinkers. The second part takes a more philosophical approach and is intended to shed some light on that mysterious effectiveness. For this purpose, the author reviews the debate between classical philosophers on the existence of innate ideas that allow us to understand the world and also the philosophically based arguments for and against the use of mathematics in physical sciences. In this context, Schopenhauer’s conceptions of causality and matter are very pertinent, and their validity is revisited in light of modern physics. The final question addressed is whether the effectiveness of mathematics can be explained by its “existence” in an independent platonic realm, as Gödel believed. The book aims at readers interested in the history and philosophy of physics. It is accessible to those with only a very basic (not professional) knowledge of physics.




The Concept of Probability in the Mathematical Representation of Reality


Book Description

The first English translation of Hans Reichenbach's lucid doctoral thesis sheds new light on how Kant's Critique of Pure Reason was understood in some quarters at the time. The source of several themes in his still influential The Direction of Time, the thesis shows Reichenbach's early focus on the interdependence of physics, probability, and epistemology.




The Mathematical Reality


Book Description

Alexander Unzicker is a theoretical physicist and writes about elementary questions of natural philosophy. His critique of contemporary physics Bankrupting Physics (Macmillan) received the 'Science Book of the Year' award (German edition 2010). With The Mathematical Reality, Unzicker presents his most fundamental work to date, which is the result of years of study of natural laws and their historical development.The discovery of fundamental laws of nature has influenced the fate of Homo sapiens more than anything else. Has modern physics already understood these laws? Many puzzles formulated by Albert Einstein or Paul Dirac are still unsolved today, in particular the meaning of fundamental constants. In this book, Unzicker contends that a rational description of nature must do without any constants.A methodological and historical analysis shows, however, that the underlying problem of physics is deep, unexpected and fatal: the concepts of space and time themselves, the basis of science since Newton, could be fundamentally inappropriate for the description of reality, although-or precisely because-they are so easily accessible to human perception.A new understanding of reality can only arise from mathematics. By exploring the three-dimensional unitary sphere, which could replace the concepts of space and time, the author presents a mathematical vision that points the way to a new understanding of reality.




Physics, Structure, and Reality


Book Description

In Physics, Structure, and Reality, Jill North addresses a set of questions that get to the heart of the project of interpreting physics--of figuring out what physics is telling us about the world. How do we figure out the nature of the world from a mathematically formulated physical theory? What do we infer about the world when a physical theory can be mathematically formulated in different ways? North argues that there is a certain notion of structure, implicit in physics and mathematics, to which we should pay careful attention in order to discern what physics is telling us about the nature of reality. North draws lessons for related topics, including the use of coordinate systems in physics, the differences among various formulations of classical mechanics, the nature of spacetime structure, the equivalence of physical theories, and the importance of scientific explanation. Although the book does not explicitly defend scientific realism, instead taking this to be a background assumption, the account provides an indirect case for realism toward our best theories of physics.




Reconstructing Reality


Book Description

Attempts to understand various aspects of the empirical world often rely on modelling processes that involve a reconstruction of systems under investigation. Typically the reconstruction uses mathematical frameworks like gauge theory and renormalization group methods, but more recently simulations also have become an indispensable tool for investigation. This book is a philosophical examination of techniques and assumptions related to modelling and simulation with the goal of showing how these abstract descriptions can contribute to our understanding of the physical world. Particular issues include the role of fictional models in science, how mathematical formalisms can yield physical information, and how we should approach the use of inconsistent models for specific types of systems. It also addresses the role of simulation, specifically the conditions under which simulation can be seen as a technique for measurement, replacing more traditional experimental approaches. Inherent worries about the legitimacy of simulation "knowledge" are also addressed, including an analysis of verification and validation and the role of simulation data in the search for the Higgs boson. In light of the significant role played by simulation in the Large Hadron Collider experiments, it is argued that the traditional distinction between simulation and experiment is no longer applicable in some contexts of modern science. Consequently, a re-evaluation of the way and extent to which simulation delivers empirical knowledge is required. "This is a, lively, stimulating, and important book by one of the main scholars contributing to current topics and debates in our field. It will be a major resource for philosophers of science, their students, scientists interested in examining scientific practice, and the general scientifically literate public."-Bas van Fraassen, Distinguished Professor of Philosophy, San Francisco State University




Neo-Aristotelian Perspectives on Contemporary Science


Book Description

The last two decades have seen two significant trends emerging within the philosophy of science: the rapid development and focus on the philosophy of the specialised sciences, and a resurgence of Aristotelian metaphysics, much of which is concerned with the possibility of emergence, as well as the ontological status and indispensability of dispositions and powers in science. Despite these recent trends, few Aristotelian metaphysicians have engaged directly with the philosophy of the specialised sciences. Additionally, the relationship between fundamental Aristotelian concepts—such as "hylomorphism", "substance", and "faculties"—and contemporary science has yet to receive a critical and systematic treatment. Neo-Aristotelian Perspectives on Contemporary Science aims to fill this gap in the literature by bringing together essays on the relationship between Aristotelianism and science that cut across interdisciplinary boundaries. The chapters in this volume are divided into two main sections covering the philosophy of physics and the philosophy of the life sciences. Featuring original contributions from distinguished and early-career scholars, this book will be of interest to specialists in analytical metaphysics and the philosophy of science.




Logos and Alogon


Book Description

This book is a philosophical study of mathematics, pursued by considering and relating two aspects of mathematical thinking and practice, especially in modern mathematics, which, having emerged around 1800, consolidated around 1900 and extends to our own time, while also tracing both aspects to earlier periods, beginning with the ancient Greek mathematics. The first aspect is conceptual, which characterizes mathematics as the invention of and working with concepts, rather than only by its logical nature. The second, Pythagorean, aspect is grounded, first, in the interplay of geometry and algebra in modern mathematics, and secondly, in the epistemologically most radical form of modern mathematics, designated in this study as radical Pythagorean mathematics. This form of mathematics is defined by the role of that which beyond the limits of thought in mathematical thinking, or in ancient Greek terms, used in the book’s title, an alogon in the logos of mathematics. The outcome of this investigation is a new philosophical and historical understanding of the nature of modern mathematics and mathematics in general. The book is addressed to mathematicians, mathematical physicists, and philosophers and historians of mathematics, and graduate students in these fields.




Physics for Mathematicians


Book Description




Physical Reality and Mathematical Description


Book Description

This collection of essays is intended as a tribute to Josef Maria Jauch on his sixtieth birthd~. Through his scientific work Jauch has justly earned an honored name in the community of theo retical physicists. Through his teaching and a long line of dis tinguished collaborators he has put an imprint on modern mathema tical physics. A number of Jauch's scientific collaborators, friends and admirers have contributed to this collection, and these essays reflect to some extent Jauch's own wide interests in the vast do main of theoretical physics. Josef Maria Jauch was born on 20 September 1914, the son of Josef Alois and Emma (nee Conti) Jauch, in Lucerne, Switzerland. Love of science was aroused in him early in his youth. At the age of twelve he came upon a popular book on astronomy, and an exam ple treated in this book mystified him. It was stated that if a planet travels around a centre of Newtonian attraction with a pe riod T, and if that planet were stopped and left to fall into the centre from any point of the circular orbit, it would arrive at the centre in the time T/I32. Young Josef puzzled about this for several months until he made his first scientific discovery : that this result could be derived from Kepler's third law in a quite elementary way.