The Mathematical Theory of Selection, Recombination, and Mutation


Book Description

"It is close to being a masterpiece...could well be the classic presentation of the area." Warren J. Ewens, University of Pennsylvania, USA Population genetics is concerned with the study of the genetic, ecological, and evolutionary factors that influence and change the genetic composition of populations. The emphasis here is on models that have a direct bearing on evolutionary quantitative genetics. Applications concerning the maintenance of genetic variation in quantitative traits and their dynamics under selection are treated in detail. * Provides a unified, self-contained and in-depth study of the theory of multilocus systems * Introduces the basic population-genetic models * Explores the dynamical and equilibrium properties of the distribution of quantitative traits under selection * Summarizes important results from more demanding sections in a comprehensible way * Employs a clear and logical presentation style Following an introduction to elementary population genetics and discussion of the general theory of selection at two or more loci, the author considers a number of mutation-selection models, and derives the dynamical equations for polygenic traits under general selective regimes. The final chapters are concerned with the maintenance of quantitative-genetic variation, the response to directional selection, the evolutionary role of deleterious mutations, and other topics. Graduate students and researchers in population genetics, evolutionary theory, and biomathematics will benefit from the in-depth coverage. This text will make an excellent reference volume for the fields of quantitative genetics, population and theoretical biology.




A Mutation-Selection Model with Recombination for General Genotypes


Book Description

The authors investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Their model arises when they incorporate very general recombination mechanisms into an earlier model of mutation and selection presented by Steinsaltz, Evans and Wachter in 2005 and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. The authors' motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging.




Probability Models for DNA Sequence Evolution


Book Description

"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.




A Biologist's Guide to Mathematical Modeling in Ecology and Evolution


Book Description

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available




Coalescent Theory


Book Description

This textbook provides the foundation for molecular population genetics and genomics. It shows the conceptual framework for studies of DNA sequence variation within species, and is the source of essential tools for making inferences about mutation, recombination, population structure and natural selection from DNA sequence data.




The Genetic Structure of Populations


Book Description

It is part of the ideology of science that it is an international enterprise, carried out by a community that knows no barriers of nation or culture. But the reality is somewhat different. Despite the best intentions of scientists to form a single community, unseparated by differences of national and political viewpoint, they are, in fact, separated by language. Scientific literature in German is not generally assimilated by French workers, nor that appearing in French by those whose native language is English. The problem appears to have become more severe since the last war, because the ascendance of the United States as the preeminent economic power led, in a time of big and expensive science, to a pre dominance of American scientific production and a growing tendency (at least among English-speakers) to regard English as the international language of science. International congresses and journals of world circulation have come more and more to take English as their standard or official language. As a result, students and scientific workers in the English speaking world have become more linguistically parochial than ever before and have been cut off from a considerable scientific literature. Population genetics has been no exception to the rule. The elegant and extremely innovative theoreticaI work of Malecot, for example, is only now being properly assimilated by population biologists outside France. It was therefore with some sense of frustration that I read Prof.




Crumbling Genome


Book Description

A thought-provoking exploration of deleterious mutations in the human genome and their effects on human health and wellbeing Despite all of the elaborate mechanisms that a cell employs to handle its DNA with the utmost care, a newborn human carries about 100 new mutations, originated in their parents, about 10 of which are deleterious. A mutation replacing just one of the more than three billion nucleotides in the human genome may lead to synthesis of a dysfunctional protein, and this can be inconsistent with life or cause a tragic disease. Several percent of even young people suffer from diseases that are caused, exclusively or primarily, by pre ]existing and new mutations in their genomes, including both a wide variety of genetically simple Mendelian diseases and diverse complex diseases such as birth anomalies, diabetes, and schizophrenia. Milder, but still substantial, negative effects of mutations are even more pervasive. As of now, we possess no means of reducing the rate at which mutations appear spontaneously. However, the recent flood of genomic data made possible by next-generation methods of DNA sequencing, enabled scientists to explore the impacts of deleterious mutations on humans with previously unattainable precision and begin to develop approaches to managing them. Written by a leading researcher in the field of evolutionary genetics, Crumbling Genome reviews the current state of knowledge about deleterious mutations and their effects on humans for those in the biological sciences and medicine, as well as for readers with only a general scientific literacy and an interest in human genetics. Provides an extensive introduction to the fundamentals of evolutionary genetics with an emphasis on mutation and selection Discusses the effects of pre-existing and new mutations on human genotypes and phenotypes Provides a comprehensive review of the current state of knowledge in the field and considers crucial unsolved problems Explores key ethical, scientific, and social issues likely to become relevant in the near future as the modification of human germline genotypes becomes technically feasible Crumbling Genome is must-reading for students and professionals in human genetics, genomics, bioinformatics, evolutionary biology, and biological anthropology. It is certain to have great appeal among all those with an interest in the links between genetics and evolution and how they are likely to influence the future of human health, medicine, and society.





Book Description




Handbook of Statistical Genomics


Book Description

A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.




Evolutionary Algorithms


Book Description

Despite decades of work in evolutionary algorithms, there remains an uncertainty as to the relative benefits and detriments of using recombination or mutation. This book provides a characterization of the roles that recombination and mutation play in evolutionary algorithms. It integrates important prior work and introduces new theoretical techniques for studying evolutionary algorithms. Consequences of the theory are explored and a novel method for comparing search and optimization algorithms is introduced. The focus allows the book to bridge multiple communities, including evolutionary biologists and population geneticists.