The Mathematics of Life


Book Description

Biologists have long dismissed mathematics as being unable to meaningfully contribute to our understanding of living beings. Within the past ten years, however, mathematicians have proven that they hold the key to unlocking the mysteries of our world -- and ourselves. In The Mathematics of Life, Ian Stewart provides a fascinating overview of the vital but little-recognized role mathematics has played in pulling back the curtain on the hidden complexities of the natural world -- and how its contribution will be even more vital in the years ahead. In his characteristically clear and entertaining fashion, Stewart explains how mathematicians and biologists have come to work together on some of the most difficult scientific problems that the human race has ever tackled, including the nature and origin of life itself.




Game Theory


Book Description

Brian Clegg was always fascinated by Isaac Asimov's classic Foundation series of books, in which the future is predicted using sophisticated mathematical modelling of human psychology and behaviour. Only much later did he realise that Asimov's 'psychohistory' had a real-world equivalent: game theory. Originating in the study of probabilistic gambling games that depend on a random source - the throw of a dice or the toss of a coin - game theory soon came to be applied to human interactions: essentially, what was the best strategy to win, whatever you were doing? Its mathematical techniques have been applied, with varying degrees of wisdom, to fields such as economics, evolution, and questions such as how to win a nuclear war. Clegg delves into game theory's colourful history and significant findings, and shows what we can all learn from this oft-misunderstood field of study.




What's the Use?


Book Description

See the world in a completely new way as an esteemed mathematician shows how math powers the world—from technology to health care and beyond. Almost all of us have sat in a math class, wondering when we'd ever need to know how to find the roots of a polynomial or graph imaginary numbers. And in one sense, we were right: if we needed to, we'd use a computer. But as Ian Stewart argues in What's the Use?, math isn't just about boring computations. Rather, it offers us new and profound insights into our world, allowing us to accomplish feats as significant as space exploration and organ donation. From the trigonometry that keeps a satellite in orbit to the prime numbers used by the world's most advanced security systems to the imaginary numbers that enable augmented reality, math isn't just relevant to our lives. It is the very fabric of our existence.




Modeling Life


Book Description

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?




Introduction to Mathematics for Life Scientists


Book Description

A few decades ago mathematics played a modest role in life sciences. Today, however, a great variety of mathematical methods is applied in biology and medicine. Practically every mathematical procedure that is useful in physics, chemistry, engineering, and economics has also found an important application in the life sciences. The past and present training of life scientists does by no means reflect this development. However, the impact ofthe fast growing number of applications of mathematical methods makes it indispensable that students in the life sciences are offered a basic training in mathematics, both on the undergraduate and the graduate level. This book is primarily designed as a textbook for an introductory course. Life scientists may also use it as a reference to find mathematical methods suitable to their research problems. Moreover, the book should be appropriate for self-teaching. It will also be a guide for teachers. Numerous references are included to assist the reader in his search for the pertinent literature.




Mathematics for the Life Sciences


Book Description

An accessible undergraduate textbook on the essential math concepts used in the life sciences The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences A solutions manual for professors and an illustration package is available




The Math of Life and Death


Book Description

"Few of us really appreciate the full power of math--the extent to which its influence is not only in every office and every home, but also in every courtroom and hospital ward. In this ... book, Kit Yates explores the true stories of life-changing events in which the application--or misapplication--of mathematics has played a critical role: patients crippled by faulty genes and entrepreneurs bankrupted by faulty algorithms; innocent victims of miscarriages of justice; and the unwitting victims of software glitches"--Publisher marketing.




The Mathematical Coloring Book


Book Description

This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.




How Not to Be Wrong


Book Description

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.