The Mathematics of Superoscillations


Book Description

In the past 50 years, quantum physicists have discovered, and experimentally demonstrated, a phenomenon which they termed superoscillations. Aharonov and his collaborators showed that superoscillations naturally arise when dealing with weak values, a notion that provides a fundamentally different way to regard measurements in quantum physics. From a mathematical point of view, superoscillating functions are a superposition of small Fourier components with a bounded Fourier spectrum, which result, when appropriately summed, in a shift that can be arbitrarily large, and well outside the spectrum. The purpose of this work is twofold: on one hand the authors provide a self-contained survey of the existing literature, in order to offer a systematic mathematical approach to superoscillations; on the other hand, they obtain some new and unexpected results, by showing that superoscillating sequences can be seen of as solutions to a large class of convolution equations and can therefore be treated within the theory of analytically uniform spaces. In particular, the authors will also discuss the persistence of the superoscillatory behavior when superoscillating sequences are taken as initial values of the Schrödinger equation and other equations.




Recent Developments in Operator Theory, Mathematical Physics and Complex Analysis


Book Description

This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.




Advanced Mathematical Methods


Book Description

This text is a self-contained second course on mathematical methods dealing with topics in linear algebra and multivariate calculus that can be applied to statistics.




A Half-Century of Physical Asymptotics and Other Diversions


Book Description

Michael Berry is a theoretical physicist who has contributed to a wide variety of areas in quantum mechanics, optics and related mathematics, linked by the geometrical aspects of waves, especially phase. This collection of his selected published and unpublished papers, reviews, tributes to other scientists, speeches and other works ranges from the technical to the popular. It is organized by the themes of his significant scientific contributions. Detailed introductions emphasize the rich connections between the different themes. An essential read for physicists, mathematicians, students and philosophers of science.




Noncommutative Analysis, Operator Theory and Applications


Book Description

This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.




Theoretical Physics, Wavelets, Analysis, Genomics


Book Description

Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann’s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.




New Insights on Oscillators and Their Applications to Engineering and Science


Book Description

Over the years, the construction of models has played an important part in the discovery and dissemination of knowledge. The study of problems involving the coupling of several systems has been widely explored, essentially in the function of the change of constructive characteristics of machines and structures. Accordingly, vibrating (oscillatory) processes can be divided into the following types: free, forced, parametric, and self-excited oscillations. Furthermore, two or more oscillations can interact in the same oscillatory system. This book provides a comprehensive overview of oscillators and their applications. It includes eight chapters organized into three sections “MEMS and NEMS”, “Vibrations” and “Modeling”.




Quantum Theory: A Two-Time Success Story


Book Description

Yakir Aharonov is one of the leading figures in the foundations of quantum physics. His contributions range from the celebrated Aharonov-Bohm effect (1959), to the more recent theory of weak measurements (whose experimental confirmations were recently ranked as the two most important results of physics in 2011). This volume will contain 27 original articles, contributed by the most important names in quantum physics, in honor of Aharonov's 80-th birthday. Sections include "Quantum mechanics and reality," with contributions from Nobel Laureates David Gross and Sir Anthony Leggett and Yakir Aharonov, S. Popescu and J. Tollaksen; "Building blocks of Nature" with contributions from Francois Englert (co-proposer of the scalar boson along with Peter Higgs); "Time and Cosmology" with contributions from Leonard Susskind, P.C.W. Davies and James Hartle; "Universe as a Wavefunction," with contributions from Phil Pearle, Sean Carroll and David Albert; "Nonlocality," with contributions from Nicolas Gisin, Daniel Rohrlich, Ray Chiao and Lev Vaidman; and finishing with multiple sections on weak values with contributions from A. Jordan, A. Botero, A.D. Parks, L. Johansen, F. Colombo, I. Sabadini, D.C. Struppa, M.V. Berry, B. Reznik, N. Turok, G.A.D. Briggs, Y. Gefen, P. Kwiat, and A. Pines, among others.




On Operads, Bimodules and Analytic Functors


Book Description

The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory of operad bimodules, that has operads as -cells, operad bimodules as -cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.




The Best Writing on Mathematics 2015


Book Description

The year's finest writing on mathematics from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2015 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here David Hand explains why we should actually expect unlikely coincidences to happen; Arthur Benjamin and Ethan Brown unveil techniques for improvising custom-made magic number squares; Dana Mackenzie describes how mathematicians are making essential contributions to the development of synthetic biology; Steven Strogatz tells us why it’s worth writing about math for people who are alienated from it; Lisa Rougetet traces the earliest written descriptions of Nim, a popular game of mathematical strategy; Scott Aaronson looks at the unexpected implications of testing numbers for randomness; and much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.