The Mechanical Behavior of Salt – Understanding of THMC Processes in Salt


Book Description

A unique opportunity to review the latest progress in an expanding area of interest: the Mechanical Behaviour of Salt. These Proceedings include over fifty papers and summaries describing the latest findings in ongoing studies from a number of research groups. For the 2007 conference, there was a particular focus on the understanding of thermal, mechanical, hydraulic and chemical coupled processes (THMC). Such processes are of specific interest when considering advanced problems in waste disposal, storage and mining. The book includes a number of themes: - laboratory and in-situ investigations modelling, e.g. derivation of constitutive equations - numerical computations and prediction of long-term behaviour - THMC processes in mining projects, storage and permanent disposal - case studies - geology - mining and storage applications and abandonment The International Conferences on the Mechanical Behaviour of Salt have a long tradition, being initiated in 1981 at The Pennsylvania State University, USA. The present conference, the sixth of the series, took place in Hannover, Germany, in May 2007. The conference brought together mining engineers, researchers, and university professors interested in the mechanical behaviour of salt, mostly from Europe and beyond.




Mechanical Behaviour of Salt VII


Book Description

This collection of papers on research into and management of underground structures in salt formations represents the state-of-the-art on applications of salt mechanics in mines and storage caverns for gas/hydrocarbon, radioactive waste and toxic waste disposal. The contributions cover laboratory experiments, constitutive numerical modeling and fie




The Mechanical Behavior of Salt – Understanding of THMC Processes in Salt


Book Description

A unique opportunity to review the latest progress in an expanding area of interest: the Mechanical Behaviour of Salt. These Proceedings include over fifty papers and summaries describing the latest findings in ongoing studies from a number of research groups. For the 2007 conference, there was a particular focus on the understanding of thermal, mechanical, hydraulic and chemical coupled processes (THMC). Such processes are of specific interest when considering advanced problems in waste disposal, storage and mining. The book includes a number of themes: - laboratory and in-situ investigations modelling, e.g. derivation of constitutive equations - numerical computations and prediction of long-term behaviour - THMC processes in mining projects, storage and permanent disposal - case studies - geology - mining and storage applications and abandonment The International Conferences on the Mechanical Behaviour of Salt have a long tradition, being initiated in 1981 at The Pennsylvania State University, USA. The present conference, the sixth of the series, took place in Hannover, Germany, in May 2007. The conference brought together mining engineers, researchers, and university professors interested in the mechanical behaviour of salt, mostly from Europe and beyond.




The Mechanical Behavior of Salt X


Book Description

Rock salt formations have long been recognized as a valuable resource - not only for salt mining but for construction of oil and gas storage caverns and for isolation of radioactive and other hazardous wastes. Current interest is fast expanding towards construction and re-use of solution-mined caverns for storage of renewable energy in the form of hydrogen, compressed air and other gases. Evaluating the long term performance and safety of such systems demands an understanding of the coupled mechanical behavior and transport properties of salt. This volume presents a collection of 60 research papers defining the state-of-the-art in the field. Topics range from fundamental work on deformation mechanisms and damage of rock salt to compaction of engineered salt backfill. The latest constitutive models are applied in computational studies addressing the evolution and integrity of storage caverns, repositories, salt mines and entire salt formations, while field studies document ground truth at multiple scales. The volume is structured into seven themes: Microphysical processes and creep models Laboratory testing Geological isolation systems and geotechnical barriers Analytical and numerical modelling Monitoring and site-specific studies Cavern and borehole abandonment and integrity Energy storage in salt caverns The Mechanical Behavior of Salt X will appeal to graduate students, academics, engineers and professionals working in the fields of salt mechanics, salt mining and geological storage of energy and wastes, but also to researchers in rock physics in general.




Mechanical Behaviour of Salt VIII


Book Description

Technical contributions contained in this volume characterize continuity of science, engineering and modeling regarding the mechanical behavior of salt. These papers evidence relationships from microscopic dislocation structure to modeling applications over kilometer dimensions, a reach of more than ten orders of magnitude. The book is arranged alo




Rock Mechanics and Engineering Volume 3


Book Description

Analysis, Modeling & Design is the third volume of the five-volume set Rock Mechanics and Engineering and contains twenty-eight chapters from key experts in the following fields: - Numerical Modeling Methods; - Back Analysis; - Risk Analysis; - Design and Stability Analysis: Overviews; - Design and Stability Analysis: Coupling Process Analysis; - Design and Stability Analysis: Blast Analysis and Design; - Rock Slope Stability Analysis and Design; - Analysis and Design of Tunnels, Caverns and Stopes. The five-volume set “Comprehensive Rock Engineering”, which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wideranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are worldrenowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.




Rock Characterisation, Modelling and Engineering Design Methods


Book Description

Rock Characterisation, Modelling and Engineering Design Methods contains the contributions presented at the 3rd ISRM SINOROCK Symposium (Shanghai, China, 1820 June 2013). The papers contribute to the further development of the overall rock engineering design process through the sequential linkage of the three themes of rock characterisation, model




Gas Generation and Migration in Deep Geological Radioactive Waste Repositories


Book Description

Understanding the behaviour of gases in the context of radioactive waste disposal is a fundamental requirement in developing a safety case for the disposal of radioactive waste. Of particular importance are the long-term performance of bentonite buffers and cement-based backfill materials that may be used to encapsulate and surround the waste in a repository, and the behaviour of plastic clays, indurated mudrocks and crystalline formations that may be the host rocks for a repository. The EC Euratom programme funded project, FORGE, has provided new insights into the processes and mechanisms governing gas generation and migration with the aim of reducing uncertainty. This volume brings together papers on aspects of this topic arising from both the FORGE project and work undertaken elsewhere. This has been achieved by the acquisition of new experimental data coupled with modelling, through a series of laboratory and field-scale experiments performed at a number of underground research laboratories throughout Europe.




Boundaries of Rock Mechanics


Book Description

Boundaries of Rock Mechanics. Recent Advances and Challenges for the 21st Century contains 180 papers from the International Young Scholars Symposium on Rock Mechanics 2008 (Beijing, China, 28 April-2 May 2008). The symposium was organized by the ISRM Commission on Education, and sponsored by the International Society for Rock Mechanics (ISRM) and




Computational Geotechnics


Book Description

In this book, effective computational methods to facilitate those pivotal simulations using open-source software are introduced and discussed with a special focus on the coupled thermo-mechanical behavior of the rock salt. A cohesive coverage of applying geotechnical modeling to the subsurface storage of hydrogen produced from renewable energy sources is accompanied by specific, reproducible example simulations to provide the reader with direct access to this fascinating and important field. Energy carriers such as natural gas, hydrogen, oil, and even compressed air can be stored in subsurface geological formations such as depleted oil or gas reservoirs, aquifers, and caverns in salt rock. Many challenges have arisen in the design, safety and environmental impact assessment of such systems, not the least of which is that large-scale experimentation is not a feasible option. Therefore, simulation techniques are central to the design and risk assessment of these and similar geotechnical facilities.