The Mechanics of Soils and Foundations


Book Description

Ideal for undergraduates of geotechnical engineering for civil engineers, this established textbook sets out the basic theories of soil mechanics in a clear and straightforward way; combining both classical and critical state theories and giving students a good grounding in the subject which will last right through into a career as a geotechnical engineer. The subject is broken down into discrete topics which are presented in a series of short, focused chapters with clear and accessible text that develops from the purely theoretical to discussing practical applications. Soil behaviour is described by relatively simple equations with clear parameters while a number of worked examples and simple experimental demonstrations are included to illustrate the principles involved and aid reader understanding.




An Introduction to the Mechanics of Soils and Foundations


Book Description

Covering the undergraduate course in geotechnical engineering for civil engineers, this work sets out the basic theories of soil mechanics in a clear, simple way, combining both classical and critical state theories. By using short, focused chapters, the author ensures an accessible text while maintaining a continuous thread running through the book as theory develops into application. The treatment of soil mechanics is essentially theoretical but it is not highly mathematical and soil behaviour is represented by relatively simple equations with clearly defined parameters. The theory is supported by worked examples and simple experimental demonstrations.




Soil Mechanics and Foundation Engineering: Fundamentals and Applications


Book Description

Learn the basics of soil mechanics and foundation engineering This hands-on guide shows, step by step, how soil mechanics principles can be applied to solve geotechnical and foundation engineering problems. Presented in a straightforward, engaging style by an experienced PE, Soil Mechanics and Foundation Engineering: Fundamentals and Applications starts with the basics, assuming no prior knowledge, and gradually proceeds to more advanced topics. You will get rich illustrations, worked-out examples, and real-world case studies that help you absorb the critical points in a short time. Coverage includes: Phase relations Soil classification Compaction Effective stresses Permeability and seepage Vertical stresses under loaded areas Consolidation Shear strength Lateral earth pressures Site investigation Shallow and deep foundations Earth retaining structures Slope stability Reliability-based design




Mechanics of Residual Soils, Second Edition


Book Description

Residual soils are found in many parts of the world and are used extensively as construction materials for roads, embankments and dams, and to support the foundations of buildings, bridges and load-bearing pavements. The characteristics and engineering properties of residual soils can differ significantly from those of the more familiar transported soils. The fact that residual soils occur often in areas with tropical and sub-tropical climates and (extensively) in semi-arid climates, adds another dimension to their engineering performance, that of unsaturation. Although there are many books that deal with the mechanics of soils, these are based mainly on the characteristics and behaviour of saturated transported soils. The first edition of this book was the first book to be written specifically about the mechanics of residual soils. The book was prepared by a panel of authors drawn from the Technical Committee on Tropical and Residual Soils of the International Society for Soil Mechanics and Foundation Engineering. It was written as a practical professional guide for geotechnical engineers working with residual soils. The second edition has retained the valuable information contained in the first edition. The present editors and authors have extensively revised and augmented the content to bring it completely up to date, adding significantly to the sections on unsaturated soil mechanics and expanding the range and number of instructive case histories. Furthermore, sections on pedocretes, dispersive soils and karst have been added.




An Introduction to Soil Mechanics


Book Description

This textbook offers a superb introduction to theoretical and practical soil mechanics. Special attention is given to the risks of failure in civil engineering, and themes covered include stresses in soils, groundwater flow, consolidation, testing of soils, and stability of slopes. Readers will learn the major principles and methods of soil mechanics, and the most important methods of determining soil parameters both in the laboratory and in situ. The basic principles of applied mechanics, that are frequently used, are offered in the appendices. The author’s considerable experience of teaching soil mechanics is evident in the many features of the book: it is packed with supportive color illustrations, helpful examples and references. Exercises with answers enable students to self-test their understanding and encourage them to explore further through additional online material. Numerous simple computer programs are provided online as Electronic Supplementary Material. As a soil mechanics textbook, this volume is ideally suited to supporting undergraduate civil engineering students. “I am really delighted that your book is now published. When I “discovered” your course a few years ago, I was elated to have finally found a book that immediately resonated with me. Your approach to teaching soil mechanics is precise, rigorous, clear, concise, or in other words “crisp." My colleagues who share the teaching of Soil Mechanics 1 and 2 (each course is taught every semester) at the UMN have also adopted your book.” Emmanuel Detournay Professor at Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, USA




Soil Mechanics


Book Description

"This introductory course on soil mechanics presents the key concepts of stress, stiffness, seepage, consolidation, and strength within a one-dimensional framework. Consideration of the mechanical behaviour of soils requires us to consider density alongside stresses, thus permitting the unification of deformation and strength characteristics. Soils are described in a way which can be integrated with concurrent teaching of the properties of other engineering materials. The book includes a model of the shearing of soil and some examples of soil-structure interaction which are capable of theoretical analysis using one-dimensional governing equations. The text contains many worked examples, and exercises are given for private study at the end of all chapters. Some suggestions for laboratory demonstrations that could accompany such an introductory course are sprinkled through the book." --Book Jacket.




Physical Soil Mechanics


Book Description

Soil is matter in its own right. Its nature can be captured by means of monotonous, cyclic and strange attractors. Thus material properties are defined by the asymptotic response of sand- and clay-like samples to imposed deformations and stresses. This serves to validate and calibrate elastoplastic and hypoplastic relations with comparative plots. Extensions capture thermal and seismic activations, limitations occur due to localizations and skeleton decay.Attractors in the large characterize boundary value problems from model tests via geotechnical operations up to tectonic evolutions. Validations of hypoplastic calculations are shown with many examples, possible further applications are indicated in detail. This approach is energetically justified and limited by critical points where the otherwise legitimate continuity gets lost by localization and decay. You will be fascinated by the fourth element although or just as it is so manifold.




An Introduction to Soil Mechanics and Foundations


Book Description

This book is mainly intended to meet the needs of undergraduate students of Civil Engineering. In preparing the first edition of this book, I had two principal aims: firstly to provide the student with a description of soil behavior-and of the effects of the clay minerals and the soil water on such behavior-which was rather more detailed than is usual in an elementary text, and secondly to encourage him to look critically at the traditional methods of analysis and design. The latter point is important, since all such methods require certain simplifying assumptions without which no solution is generally possible. Serious errors in design are seldom the result of failure to understand the methods as such. They more usually arise from a failure to study and understand the geology of the site, or from attempts to apply analytical methods to problems for which the implicit assumptions make them unsuitable. In the design of foundations and earth structures, more than in most branches of engineering, the engineer must be continually exercising his judgment in making decisions. The analytical methods cannot relieve him of this responsibility but properly used, they should ensure that his judgment is based on sound knowledge and not on blind intuition. I hope that the book will prove to be of use to students when their courses are over, and help to bridge the awkward gap between theory and practice.




Soil Mechanics


Book Description

A logical, integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics in an easy-to-understand style. Emphasis is placed on presenting fundamental behaviour before more advanced topics are introduced. The use of S.I. units throughout, and frequent references to current international codes of practice and refereed research papers, make the contents universally applicable. Written with the university student in mind and packed full of pedagogical features, this book provides an integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics. It includes: worked examples to elucidate the technical content and facilitate self-learning a convenient structure (the book is divided into sections), enabling it to be used throughout second, third and fourth year undergraduate courses universally applicable contents through the use of SI units throughout, frequent references to current international codes of practice and refereed research papers new and advanced topics that extend beyond those in standard undergraduate courses. The perfect textbook for a range of courses on soils mechanics and also a very valuable resource for practising professional engineers.




Fundamentals of Continuum Mechanics of Soils


Book Description

Fundamentals of Continuum Mechanics of Soils provides a long-needed general scheme for the study of the important yet problematic material of soil. It closes the gap between two disciplines, soil mechanics and con- tinuum mechanics, showing that the familiar concepts of soil mechanics evolve directly from continuum mechanics. It confirms concepts such as pore pressures, cohesion and dependence of the shear stress on consolidation, and rejects the view that continuum mechanics cannot be applied to a material such as soil. The general concepts of continuum mechanics, field equations and constitutive equations are discussed. It is shown how the theory of mixtures evolves from these equations and how, along with energetics and irrevers- ible thermodynamics, it can be applied to soils. The discussion also sheds light on some aspects of mechanics of materials, especially compressible materials. Examples are the introduction of the Hencky measure of strain, the requirement of dual constitutive equations, and the dependence of the spent internal energy on the stored internal energy. Researchers in engineering mechanics and material sciences may find that the results of experiments on soils can be generalized and extended to other materials. The book is a reference text for students familiar with the fundamentals of mechanics, for scholars of soil engineering, and for soil scientists. It is also suitable as an advanced undergraduate course in soil mechanics.