Structure and Bonding in Crystalline Materials


Book Description

One of the motivating questions in materials research today is, how can elements be combined to produce a solid with specified properties? This book is intended to acquaint the reader with established principles of crystallography and cohesive forces that are needed to address the fundamental relationship between the composition, structure and bonding. Starting with an introduction to periodic trends, the book discusses crystal structures and the various primary and secondary bonding types, and finishes by describing a number of models for predicting phase stability and structure. Containing a large number of worked examples, exercises, and detailed descriptions of numerous crystal structures, this book is primarily intended as an advanced undergraduate or graduate level textbook for students of materials science. It will also be useful to scientists and engineers who work with solid materials.




Chemical Misconceptions


Book Description

Part one includes information on some of the key alternative conceptions that have been uncovered by research and general ideas for helping students with the development of scientific conceptions.




Metal-Metal Bonding


Book Description

John Berry: Metal-Metal Bonds in Chains of Three or More Metal Atoms: From Homometallic to Heterometallic Chains.- Malcolm Chisholm: Electronically Coupled MM Quadruple Bonded Complexes of Molybdenum and Tungsten.- Philip Power: Transition Metal Complexes Stabilized by Bulky Terphenyl Ligands: Applications to Metal–Metal Bonded Compounds.- Gerard Parkin: Metal–Metal Bonding in Bridging Hydride and Alkyl Compounds.- Roland Fischer and Gernot Frenking: Structure and Bonding of Metal Rich Coordination Compounds Containing Low Valent Ga(I) and Zn(I) Ligands.- Mike Hill: Homocatenation of Metal and Metalloid Main Group Elements.- Constandinos A. Tsipis: Aromaticity/Antiaromaticity in "Bare" and ‘‘Ligand-Stabilized’’ Rings of Metal Atoms.- Alexander Boldyrev: All-Transition Metal Aromaticity and Antiaromaticity.




Chemistry


Book Description

Steve and Susan Zumdahl's texts focus on helping students build critical thinking skills through the process of becoming independent problem-solvers. They help students learn to "think like a chemists" so they can apply the problem solving process to all aspects of their lives. In CHEMISTRY: AN ATOMS FIRST APPROACH, 1e, International Edition the Zumdahls use a meaningful approach that begins with the atom and proceeds through the concept of molecules, structure, and bonding, to more complex materials and their properties. Because this approach differs from what most students have experienced in high school courses, it encourages them to focus on conceptual learning early in the course, rather than relying on memorization and a "plug and chug" method of problem solving that even the best students can fall back on when confronted with familiar material. The atoms first organization provides an opportunity for students to use the tools of critical thinkers: to ask questions, to apply rules and models and to




Bonding Theory for Metals and Alloys


Book Description

Bonding Theory for Metals and Alloys, 2e builds on the success of the first edition by introducing new experimental data to each chapter that support the breakthrough "Covalon" Conduction Theory developed by Dr. Wang. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. This book covers such phenomena as the Miscibility Gap between two liquid metals, phase equilibrium, superconductivity, superplasticity, liquid metal embrittlement, and corrosion. The author also introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. Bonding Theory for Metals and Alloys, 2e is of interest to physical and theoretical chemists alongside engineers working in research and industry, as well as materials scientists, physicists, and students at the upper undergraduate and graduate level in these fields. All chapters completed revised to reflect developments in research since 2005 New experimental data added to each chapter Broadens experimental data to support the author’s "Covalon" conduction theory, which carries current in covalent bonded pairs Total of approximately 30% - 35% new and revised content




Molecular Metal-Metal Bonds


Book Description

Systematically covering all the latest developments in the field, this is a comprehensive and handy introduction to metal-metal bonding. The chapters follow a uniform, coherent structure for a clear overview, allowing readers easy access to the information. The text covers such topics as synthesis, properties, structures, notable features, reactivity and examples of applications of the most important compounds in each group with metal-metal bonding throughout the periodic table. With its general remarks at the beginning of each chapter, this is a must-have reference for all molecular inorganic chemists, including PhD students and postdocs, as well as more experienced researchers.




Metallic Bonds in Chemistry


Book Description

This book serves as a comprehensive and invaluable guide for students, researchers, and professionals interested in understanding the fundamental principles of metallic bonding. It explains the topic by presenting clear illustrations, examples, and case studies. Metallic bonding is an important concept in chemistry, and it forms the basis for understanding the structure, properties, and applications of metals in various industries from materials science and engineering to electronics and beyond. It starts with a solid foundation by exploring the basic principles and theories that govern the bonding between metal atoms. It also covers the relevant atomic structure and electronic configurations of metals to explain the factors affecting the metallic bonds formation. In addition, the crystal structures of the metals and their mechanical and thermal conduction properties are discussed. Additionally, the unique characteristics of metallic bonding in transition metals is covered due to their complex bonding patterns. Finally, the diverse applications of metallic bonding along with future directions in the field are fully discussed.




Metal-Metal Bonds and Clusters in Chemistry and Catalysis


Book Description

This book contains a series of papers and abstracts from the 7th Industry-University Cooperative Chemistry Program symposium held in the spring of 1989 at Texas A&M University. The symposium was larger than previous IUCCP symposia since it also celebrated the 25 years that had elapsed since the initial discovery by F. A. Cotton and his co-workers of the existence of metal-metal quadruple bonds. Cotton's discovery demonstrated that multiple bonding in inorganic systems is not governed by the same constraints observed in organic chemistry regarding s and p orbital involvement. The d orbitals are involved in the multiple bonding description. The quadruple bond involves considerable d orbital overlap between adjacent metal centers. Part I of this series of papers focuses upon the impact of this discovery and describes further contributions to the development of the field. Multiple metal-metal bonding now is known to permeate broad areas of transition metal chemistry. The understanding of metal-metal bonding that developed as a result of the discovery of multiple metal-metal bonding awakened a new chemistry involving metal clusters. Clusters were defined by Cotton to be species containing metal-metal bonding. Clusters in catalysis therefore seemed a logical grouping of papers in this symposium. Clusters play an every increasing role in the control of chemical reactions. Part II of this book describes some of the interesting new developments in this field. In Part III the papers examine the role clusters play in describing and understanding solid state materials.




Multiple Bonds between Metal Atoms


Book Description

Provides historical perspective as well as current data Abundantly illustrated with figures redrawn from literature data Covers all pertinent theory and physical chemistry Catalytic and chemotherapeutic applications are included